

Open Multimedia/Hypermedia Application Development Environment

Sei-Hoon Lee
Dept. of Computer Engineering

Inha Technical J. College, Inchon, Korea
seihoon@dragon.inha.ac.kr

Chang-Jong Wang
Dept. of Computer Science & Engineering,

Inha University, Inchon, Korea
cjwangse@dragon.inha.ac.kr

Abstract : Network technology has been developed rapidly
and the use of multimedia data has been increased
dramatically. So, we need the multimedia/hypermedia
information system that can code multimedia data in order
to represent their attributes, save in database and transfer
them to the users. In this paper we design distributed
multimedia/hypermedia application development
environment(MediaADE) so as to satisfy above
requirements. The MediaADE use MHEG standard to
represent temporal and spatial synchronization, real-time
transmission form, final form representation, and
interchangeable form of multimedia data. We design
MHEG engine to present coded MHEG object to users.
Also, we design the interface of communication and
database for the purpose of transmission and storing
MHEG object in client/server environment. Finally, we
design the API that assists programmers to develop
distributed multimedia/hypermedia application easily.

Keyword : MHEG, Open System, Multimedia/Hypermedia,
Application Development Environment

1. Introduction

It is difficult to standardize the stored and
transmitting format of multimedia data through network
because multimedia data generally large, are not regular in
size, and have difficult in presenting by one keyword[1].
And it is difficult for the existing multimedia/ hypermedia
development environment to interchange and reuse
information, due to the difference of stored format in
dissimilar environments.

Now MHEG(Multimedia and Hypermedia
information coding Expert Group) which standardized by
ISO/IEC JTC1/SC29/WG12 has defined encoding format
for interchanging between multimedia data through
network, presenting multimedia/hypermedia objects,
spatio-temporal synchronizing, real-time transmission, and
presentation of final form, etc[2]. This standard supports

functions in order to interchange various type of media.
Each media data is coded following international standard
such as JPEG, MPEG, etc. MHEG exhibits the presentation
of hypermedia and the standardization of exchanging.
There are many applications that are possible by using
MHEG, such as training/education, simulation/game,
sales/advertising, office information system/engineering
documentation, etc. To develop these applications, MHEG
engine is necessary. The engine has the roles of
encoding/decoding multimedia data into MHEG object and
interpreting MHEG object to present.

In this paper, we propose the distributed
multimedia/hypermedia application development
environment based on MHEG standard, MediaADE. It is
composed of MHEG engine, database server, and
Application Programming Interface(API). In designing
database server of client/server environment, ODBC,
common database interface, is used in order to solve the
discordance of interface between each other database. We
also propose the method to solve the discordance of
interface between each other network using TCP/IP
sockets supported in the most of systems. With the help
of our API, programmers can develop applications with
easy.

2. Design of MediaADE

2.1 Overview

In this section, we design the MediaADE, an
application development environment based on MHEG,
the standard of multimedia/hypermedia information
representation. MediaADE is made up of three
components. One is MHEG engine, another is database
server for storing and retrieving MHEG object, and the
other is application programming interface(API) for
developing application. MediaADE is a client/server
environment, locating MHEG engine and API at client, and
database at server.

This architecture make it possible for client to
maximize calculating ability by interpreting temporal/spatial
synchronization information of MHEG object, and for
server to minimize overhead. In addition, we locate DBMS
and application that interface with database in server to
minimize amount of transmission between client and server.
Figure 1 represents architecture of MediaADE.

M/H

Application

M/H

Application

API

mhegObject toolObject

session

MHEG Engine

MHEG

Encoder

MHEG Decoder

Interpreter
Interaction

Link_ActionSynch

Runtime_Object

MHEG object handler

Preparation

Reference

MHEG
object tree

Reference Information
Extractor

DataBase / Network Interface

ODBC

TCP/IP

DBMS

runtime
layer

abstract
layer

storage
layer

M
e
d
ia

A
D

E

.

Figure 1. Architecture of MediaADE

As shown above, MediaADE has three layered
architecture. Abstract layer includes MHEG engine and
manipulates real multimedia/hypermedia information.
MHEG engine manages all of hypermedia objects and
plays anchoring and presentation specification in Dexter.
It encodes media objects to MHEG objects and transmits
them to storage layer. And it decodes MHEG objects
transferred from storage layer transmits to presentation
application. Storage layer has two components. First,
hypermedia database which is comprised database for
MHEG objects and file system for media files and a
interface module. Second, network interface for
transferring media files and MHEG objects on
communication and database server. We use relational
DBMS and design same interface regardless of the kind of
DBMS. API provides functions that maps run-time objects
generated in interpreter to physical device by using
presentation information, interprets user's interaction and
transfers it to MHEG engine.

We implement MediaADE based on the Windows
NT. In the authoring application, users can communicates
only with API. All functions of MediaADE use NT kernel
by using Windows NT's Win32 API. Kernel communicates
with real physical devices and makes it possible to use the

functions of devices.

2.2 MHEG engine

MHEG standard defines coded representation of
multimedia/hypermedia information for final-form
representation and interchange between multimedia/
hypermedia applications in heterogeneous platforms on
network. This standard places in a category interaction,
multimedia synchronization, real-time presentation, real-
time interchange, and final-form representation. Especially,
it focus on real-time information transmission and
interchange on network[3].

Using object-oriented approaches, the standard
defines MHEG object for coded representation of
multimedia/ hypermedia information and that defines
MHEG object class for a set of multimedia object with
specially consistent structure.

In this paper, we designed the MHEG engine that is
composed of MHEG encoder, MHEG decoder, MHEG
object handler, and Interpreter. Figure 2 is MHEG engine
diagram showing component modules and the flow of
MHEG objects through MHEG engine.

Event
Processor

MHEG object

handler

Synch-
Processor

MHEG Encoder

MHEG

Decoder

ASN.1
Format

Internal Format

Communication Module

 Presentation Interface

MHEG Engine
IInterpreter

Request
refereced

MHEG
object

&media file

MHEG
object

ASN file

MHEG
object

Prepare
MHEG object

Present
MHEG object

Play / Event
MHEG object

Prepared
MHEG object

Receive

media file

Link
Processor

Action
Processor

Error
Processor

Figure 2. MHEG engine diagram

(1) ASN formatter generates ASN file from each
MHEG object. MHEG engine receives ASN file which is
described by ASN.1 notation as input and transmits this to
MHEG encoder[4, 5].

(2) MHEG encoder transmits the MHEG object of
byte-stream form converted by ASN.1 encoding rules to
communication module. And then communication module
stores MHEG object at local database.

(3) In order to process the presentation of MHEG
object, presentation interface transmits at first the
message(Play MHEG object) for representation to
Interpreter. For interpreting this MHEG object, Interpreter

transmits the message(Prepare MHEG object) for object
request to MHEG object handler.

(4) MHEG object handler loads MHEG object
through communication module from local database to
prepare specified MHEG object and maintains it by using
the structure of tree form. When the preparation of object
is completed, MHEG object handler transmits the
message(Prepared MHEG object) to Interpreter. In case of
that prepared MHEG object includes another MHEG object
and refers external media files, MHEG object handler
request for these to communication module.

(5) Requested MHEG object by MHEG object
handler is converted into internal format and then is
loaded into MHEG object handler. External media file is
stored directly into memory scope without processing
through MHEG engine.

(6) Interpreters interpret link, action and
synchronization information from prepared MHEG object.
And, Presentation Interface represents presentation object
that is related with the interpreted information to user
through screen.

(7) In presentation, the events from user may happen.
These are entered into Interpreter through Presentation
Interface. Interpreter interprets appropriately that and has
an influence on MHEG object or presentation.

(8) When Presentation Interface completes the
presentation process of a specific MHEG object,
Interpreter transmits message for the destruction of MHEG
object to MHEG object handler and starts for the
presentation of new MHEG object.

2.3 Database Server

In this section, we design the database server in
client/server environment for the purpose of saving and
retrieving MHEG objects. Database server can save and
retrieve MHEG objects in database using each MHEG
object identifier as a primary key. And database server can
send and receive MHEG objects with respond to client's
request.

Network/Database Interface

of Authoring Client

SQL Encoder

Network/Database Interface
of Presentation Client

Network/Database Interface

of Server

MHEG Object
Database

Ethernet

SELECT "mainframe"

FROM MHEG_DB

......

INSERT "mainframe"
INTO MHEG_DB

......

TCP/IP Client TCP/IP Client

MHEG DB Client

TCP/IP Server

MHEG DB Handler

Figure 3. Network/database interface for Client and
Server

We use ODBC common database interface and
TCP/IP socket network interface to cope with
heterogeneous DBMSs which generally use different
network protocol and interface.

Figure 3 depicts the interface between client and
server. When the client sent query to server, Query
Preprocessor in server analyzes the query whether it
requests MHEG object or media file. If the query request
the MHEG object, MHEG database manager is called,
otherwise media file manager is called. After searching
relevant objects or files, MHEG database manager and
media file manager send these to the client.

Some classes are used in interchange among
applications, ACTION, LINK, CONTENT, and
COMPOSITE. And we define the frame class which
derived from COMPOSITE class. The frame class is used
for representing multimedia/hypermedia data as display
unit. So, the frame class includes the all MHEG objects
which are played in the same screen.

2.4 Application Programming Interface(API)

In this section, we design API using object-oriented
method. All objects have their own method for creating,
destroying, preparing and executing. Created object is
translated by MHEG engine, and shown to user by using
its own execution method during presentation.

We define classes of multimedia/hypermedia objects,
attributes and methods of those classes for supplying
efficient API. That is possible, for object-oriented
designing. Figure 4 depicts hierarchical structure of API
class.

action linkcontent compositechanneltemplate

audiovideoimagetext graphic

session

Object

mhegObjecttoolObject

spatial
non-

spatial

Figure 4. Hierarchical structure of API class

Object class, in topmost level, is higher class of all
other classes. It has only one role, that is inheriting
attributes. Session class enables users to connect
database, to verify their username and password, to give
rights associated level of them. There is only one session
object in one application, it must be created after

application starts and must be destroyed before
application closes. In toolObject class, it is declared that
attributes used in channel and template that are used for
developing application. Channel and template classes
assist author for developing application. Channel maps
media to physical devices. Template defines structures of
hypermedia for reusing. MhegObject is the highest class
of all classes that associate with application programming,
storing and transferring. In this class, methods for creating,
destroying, preparing and executing are declared. In
addition, encoding and decoding method for transferring
is also declared. Content class, for media objects, would be
played in screen or speaker. Action class defines all
behaviour resulted from link operation. Actions are
transferred in the shape of message, to MHEG engine in
order to be interpreted by engine. Methods about message
transfer, object construction and destruction are defined in
this class. Link class is executed when users select objects
prepared for link operation. Composite class represents a
frame. As it is declared recursively and can embed other
mhegObject class objects, it manages those objects as a
list structure. When a object of this class is executed, it
sends messages to its embedded objects.

API functions define as methods of API classes.
API functions are separated to creation, preparation,
execution and destroy functions. Constructor in C++
language are used for functions associated with creation
of objects. When media objects are created, those objects
are initialized with handles of their own media files.
Preparing functions of objects give attributes associated
with created objects. Waiting for starting the execution
functions, prepared objects are allocated to channel in
order to be shown to users. Execution functions are
different from those of each other. Static media(i.e. text,
still image) end with only one execution, but dynamic
media(i.e. sound, video) is not ended until duration
because of it's dynamic properties. Because global
attributes which are up to various media form are pre-
defined in channels, each media objects just have
attributes that are used during they are presented. All
objects are executed through channels and execution
functions of channels are called in order to execute some
objects. Function execute() is inherited from mhegObject
class, defining presenting method in accordance to media
form. Because of composite class object can embed other
classes objects in lower level, execute() function is playing
these objects by using depth-first search. Content class
objects in leaf level are executed immediately. For link class
objects, Ready() function is called, and that class objects
are waiting for user's interaction. Selecting link object in
ready state, action class objects embedded in selected
object are executed. For destroy functions, destructor in
C++ is used. In case of composite class object, especially,
that kind of object must be destroyed after embedded
objects are destroyed.

Session class plays a role of bridge between
MediaADE and users. Users cannot use API without

session. Application sends request to session API for
creation of session object. Then API create session object,
allocate it to requested application. After that, all requests
of application is made through session object. Session
object has a mechanism for processing all of generated
events or messages, and methods for handling any events
that application and MHEG engine generate. In addition,
verification process at connection time and handling
request for transferring data from MHEG engine are
processed by session object. Session object send data to
server in order to verify identifier and password. Session
object also create virtual channel from client to database
server.

4. Conclusion

In this paper, we design and implement MediaADE
as a model of distributed multimedia/Hypermedia
applications development environment based on MHEG
standard. MediaADE consists of API, MHEG engine, and
database server. API is used effectively for developing
and presenting. MHEG engine manages and controls these
information totally. Database server transmits the
encoding information through network and stores them in
it. Also it transfers MHEG object when client requires
information retrieval.

MediaADE is a client/server environment and it
places MHEG engine and applications to client and
database to server. This environment makes it possible to
minimize overhead of server and to develop a various
applications in client site.

MediaADE has the following merits. First, because
of its hierarchical structure, connection between
heterogeneous system is made easily by changing of
interface. Second, MHEG engine is designed as structure
in which the internal format after decoding of transmitted
MHEG object is mapped into presentation structure of
object-oriented method. By using this internal format
structure it becomes easier to decode and encode MHEG
object at presentation interface, to make dynamic reference
to external objects or data files, and to manage sub objects.
Third, it is possible to use most database without
modification of application program by using common
database interface(ODBC). Fourth, interface for application
development is a form of object-oriented API and makes it
possible to use multimedia object by providing intuitive
method to application programmer and user. Fifth, It is
possible to reuse multimedia/hypermedia object and useful
classes efficiently through object-oriented design method.

The MediaADE would be useful as platform for
distributed multimedia/hypermedia applications
development on Korea Information Super-Highway.

References

[1] F. Kretz, F. Colaitis, “Standardizing Hypermedia
Information Objects”, IEEE Communications Magazine,
vol.1, no.5, pp. 60-70, 1992.

[2] ISO/IEC DIS 13522-1 Information technology - Coding
of Multimedia and Hypermedia information - Part 1 :
MHEG object representation - Base notation(ASN.1),
1994.

[3] R. Price, “MHEG: An Introduction to the Future
International Standard for Hypermedia Interchange”,
Proceedings of the 1st ACM International Conference
on Multimedia, Anaheim(CA), USA, pp. 121-128, 1993.

[4] ISO/IEC IS 8824 Specification of Abstract Syntax
Notation One (ASN.1). Second edition. 1990.

[5] ISO/IEC IS 8825 Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1). Second
edition. 1990.

