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Abstraet. When a belief network is used to represent a student model, we must
have a theoretically-sound way to update this model. In ordinary belief networks,
it is assumed that the properties of the extemal world, modelled by the network,
do not change as we go about gathering evidence related to those properties. I
present a general approach as to how student model updates should be made,
based on the concept of a dynamic belief network, and then show this work relates
to previous research in this area.

1 Introduction

When a belief network is used to represent a student model (e.g. [1], [2]), we must have
a theoretically-sound way to update this model. Such updates are based on information
from two sources: (i) the student, via their inputs to the system (e.g. requests for help,
answers o questions, and attempts at exercises); and (ii) the system, via its outputs (e.g.
descriptions and explanations given). In this paper, I present a general approach as to
how such updates should be made, and show this work relates to previous research in
this area. .
In ordinary belief networks, it is assumed that the properties of the external
world, modelied by the network, do not change as we go about gathering evidence
related to those properties. That is, even though the system gathers information from the
external world that causes it to modify its measures of belief about items in that world,
those items remain either true or false. This is useful, for example, in medical diagnosis,
where the cavse of a disease is assumed not to change during a (single) medical
examination.

But, such an approach is clearly inadequate for student modelling in a tutoring
system, where we must be able to reason about:

(@)  the dynamic evolution of the student's knowledge, over a period of time, as we
gain new information about the student; and

(b)  the likely effects of future tutorial actions (relative to what is currently known
about the student), so that the action with maximum likely benefit to the student
can be chosen.
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Dynamic belief networks [3] allow for reasoning about change over time. This is
achieved by having a sequence of nodes that represent the state of the external item over
a period of time, rather than having just a single temporally-invariant node. For real-
world continuous processes, the sequence of nodes may represent the external state as it
changes over a sequence of time-slices. For tutoring, it is often more useful to represent
changes in the student model over a sequence of interactions, rather than time-slices (as
illustrated by the example in the following section).

2 Two-phase updating of the student model

In general, an interaction with a student must cause the system to revise its beliefs about
the student's state of knowledge. On first consideration, it might appear that this
updating of beliefs should be modelled as a single process, representing the transition
from prior beliefs to posterior beliefs.

However, in the general case, an interaction with a student may provide clues
about two distinct (but related) pieces of information: (i) how likely it is that the student
knew a topic before the interaction; and (i) how likely it is that the student knows a
topic after the interaction, i.e. what change (if any) is caused by the interaction.

Consequently, I advocate a two-phase approach to updating the student model,
at each interaction:

(1) phase 1: the incorporation of evidence (if any) from the interaction, about the
student's state of knowledge as it was prior to the interaction; and

(b) phase 2: the expected changes (if any) in the student's state of knowledge as a
result of the interaction.

Many ITS architectures have clearly distinguishable Analysis (input-processing) and
Response (output-generating) components. The two-phase approach maps naturally
onto these architectures: phase 1 covers updates made by the Analysis component; and
phase 2 covers updates made when executing tutorial actions chosen by the Response
component.

But, this two-phase approach is applicable to any architecture that uses
probability theory for student/user modelling. This is the case even if probability theory
is just used to model uncertainty about isolated nodes (rather than structuring these into
a belief network).

In any system, phase 1 is clearly important for gathering information at the
first interaction on a given topic, i.e. topics for which there has not been any previous
interaction with the particular student. But phase 1 is especially important for gathering
information at each interaction, because the model must allow for the possxbxhty that the
student’s knowledge will change independently of interactions with the system, i.e. the

student may forget, may study independently, etc. It is necessary that the system be able

“fo handle the fact that substantial periods of time (hours, days, weeks) may elapse from

one interaction to the next, depending on how the student wishes to make use of the
system.
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Figure 1. Two-phase updating

Figure 1 is an overall Hlustration of a dynamic belief network representing this two-
phase approach. As this figure shows, following the n'th interaction, the probability that
the student is now in the learned srate, L, (i.e. student-knows (fopic) ), depends both on
whether the student was already in the learned state, L., , and on the outcome, O,, of
the interaction. (The figure also shows that there must be some initial assumption about
how likely it is that the student is in the learned state, prior to any interactions with the
system, Ly, so that the updating process has somewhere to begin.)

In the sections that follow, I derive the mathematical formulae that follow from
the two-phase approach. I then illustrate my claim for its generality, by showing that the
student modelling approaches of Corbett and Anderson [4] and Shute [5] are actually
special cases of this approach, even though these two papers appear totally unrelated to
each other!

3 Phase 1: incorporation of evidence about the student’s knowledge

With regard to Figure 1, let:

(@ O be an element in a set of possible outcomes of a given tutorial interaction
involving a given domain topic, i.¢. the set of allowed student responses for that
interaction, e.g. (a) correct or incomrect; (b) no-help, level-1-help, level-2-help,

etc;

(b  p (L) represent the system's belief that the student already knows the given
domain topic, prior to the n'th interaction (where n= 1, 2, ...);

(<) p (O, | L) represent the system's belief that outcome O, will occur when the
student already knows the domain topic;

Two-Pha:

@ p(
stit
where (¢) ¢
link betwe
1.
G
p Ly} Whe
p(
Let K(Oy) 1
¥(1
Then, equal
p(i
4 Phs
tutc
In phase 2,
interaction.
probability
outcomes.
To
"0, Outcomn
conditional
(@ pk
This
learn
forge
forge
most



Two-Phase Updating of Student Models Based on Dynamic Belief Networks 277

{d p(O,|-Ly) represent the system's belief that outcome O, will occur when the
student does not know the domain topic;

where (c) and (d) are the two conditional probabilities needed to fully define the single
link between the "L, ; learned state” node and the "0, Outcome" node, shown in Figure

L
Given values for each of these, the system must be able to revise its belief in

p (L.1) when outcome O, occurs. This is done by using the well-known Bayes's rule:

p (Ou l Ln—-l)p (Ln-l)
p (On l Ln—l)p (Ln—l) + p (On I —'Ln—l)p (ﬁLn—l)

Let K(O,) be the likelihood ratio:

1)

p(Ln-l l On) =

p( Ou I Ln-l)

Y(0.)= O —Lor)

Then, equation (1) can be simplified to:

'y (On ) 14 (Ln—l )

p(Ln—I IOH)—

T 1+[y(0,)-11p(L,) 3)

Phase 2: expected changes in the student's knowledge due to
tutoring

In phase 2, we model the expected changes in the student's knowledge as a result of the
interaction. Doing this requires a formula for p(L, | O, ), so that we know what
probability to assign to p (L) for each possible outcome, O,, in the set of possible
outcomes.

To fully define the double link from the "L, learned state” node and the
"0, Outcome” node to the "L, learned state” node shown in Figure 1, requires two
conditional probabilities for each possible outcome:

@  plalla, O

This function represents the probability that the student will remain in the
learned state as a result of the outcome, i.e. it is the rate of remembering (or "not
forgetting”). As we do not expect an ITS's interactions to cause the student to
forget something they already know, this probability will have the value 1 in
most implementations. However, for completeness, I leave it as a function here.
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When p(L,.1) = 0, equation (7) gives:

L|0.)=M0,) ©

Le. 2(0y) = p(Ly | On) when p(L,,) = O, illustrating the earlier description of 3(0,) as
the "rate of learning”.

Figure 2 illustrates equation (7) for some particular values of K, ¥ and X. For
each tuple of such values, there is a direct visual interpretation of these three
parameters: the height of each end-point directly portrays the values of parameters ¥
and % (in accord with equations (8) and (9)); and the curvature depends directly on the
value of K, i.e. concave when K > 0, convex when K < 0, and straight when K= 0.
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Figure 2. Example curves for equation (7)

6 A dynamic belief network for probabilistic modelling in the
ACT Programming Languages Tutor

The ACT Programming Languages Tutor [4] uses a two-state psychological learning
model, which is updated each time that the student has an opportunity to show their
knowledge of a production rule in the (ideal) student model. In an appendix to their
paper, the authors briefly state equations for calculating the probability that a
production rule is in the learned state following a correct (C,) or erroneous (E,)
student response, at the nth opportunity.

In this section, I illustrate the applicability of my approach of using dynamic
belief networks by showing how Corbett and Anderson's equations can be derived as
a special case of my earlier equations. In their paper, Corbett and Anderson did not
describe how they derived these equations. Even though they did not make any
explicit use of the concept of dynamic belief networks, their learning model is clearly
based on the mathematics of probability theory. So, it is not too surprising that there
should be a direct relationship between their work and mine. Here, I show that my
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work is a generalisation of their model, by adding constraints to my model until I
obtain their equations. (This is an extension of the research reported in [2].)
The authors make the following simplifying assumptions:

{a) the set of outcomes has only two values: C,, (i.e. correct) and E, (i.e. error).
(b) p L | Loy, Op) = ¥ (O,) = 1, i.e. no forgetting.

(€)  p(In]|-Lps, O =Z(0,) is a constant, i.e. the probability that the student will
make the transition from the unlearned 1o the learned state is independent of
the outcome. The authors use the symbol p(T) for this constant.

(d)  there are no conditional probabilities linking different rules, i.e. no prerequisite
constraints.

Assumption (c) means that there is no direct dependency between the L, node and the
O, node shown previously in Figure 1. By dropping this arrow, it should be clear that
this is the simplest possible (structurally) dynamic belief network for student
modelling (and simplicity may be a virtue rather than a vice). Under the above
assumptions, equation (5) becomes:

P(L.| 0. )= p(T)+[1- p(T)] p( Li| O.)
le.

p(Ln!On)::p(Ln-flOn)+p(T)(I’p(Ln-1lOn))

‘When O, is replaced by each of the two possible outcomes, C, and E,, we obtain:

p(LnICn)= p(Ln-IlCn)+p(T)(]' P( Ln-ll Cn))

P(LnlEn)= p(Ln—llEn)+p(T)(I"p(LnllEn))

which are the two equations that Corbett and Anderson number as [1] and [2], in their
paper. Under these same assumptions, equation (2) becomes:

p( Cn I Lu-l)
P( Cn l _-‘Ln-l)

when O, has the value C,. Substituting this into equation (3), a version of Bayes's
theorem, gives:

Y(Ca)=

L.|C)= pC,|L)pL)
pL,,|C) p(C, |[L_)p(L, )+ p(—L,_)p(C, | =L, )

which is the same as the equation marked [3] in Corbett and Anderson's paper, except
for: (i) some rearrangement of terms; and (ii) they use the symbol "U, ;" (for
“unlearned") where I use "-L,". For brevity, I omit the analogous derivation of their
equation [4] for p (Lo4[E,).
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As a result of their assumptions, Corbett and Andersen’s model has only four
parameters associated with each rule. I list these parameters below, and, for clarity of
reference, use the same notation utilised by the authors:

pllo)  the probability that a rule is in the learned state prior to the first
opportunity to apply the rule (e.g. from reading text);

p(CJU) the probability that a student will guess correctly if the applicable rule is
in the unlearned state (same as my p (O,=C,}L,.));

p(E[L) the probability that a student will slip and make an error when the
applicable rule is in the learned state (same as my p (O,=F,|L,.1));

p(T)  the probability that a rule will make the transition from the unlearned
state to the learned state following an opportunity to apply the rule (same
as my 2 (Oy).

In the most general case, the values of these parameters may be set empirically and
may vary from rule to rule. Corbett and Anderson [4] describe a study in which these
parameters were held constant across 21 rules, with p(Lg)=0.5, p(CJU)=0.2,
pE[L) = 0.2 and p(T) = 0.4. In my notation, these values are equivalent to K (C,) = 4,
K(E,) =025 and X (C,) = X (E,) = 0.4.

7 Another example of a dynamic belief network: SMART

While developing SMART, Shute [5] created a number of functions for updating her
student model, as illustrated in Figure 3. The mappings in these functions were
developed mainty by hand, based on the opinions of domain experts. Shute’s empirical
validation of her system, which is based on this approach, makes this student modelling
approach worthy of further study.

As is clear from Figure 3, Shute's model is a probabilistic one, thus raising the
interesting question as to how it relates to my own work. Like Corbett and Anderson,
Shute does not make any use of the concept of dynamic belief networks. However, in
this section, I show that such networks are a good way to provide a theoretical
foundation for her work, by showing how Shute's graphs can be represented using my
equations.

When solving each problem posed by Shute's SMART system, the student is
allowed to choose from four levels of help (or "hints"), where level-0 covers the case
where the student required no help at all. Unlike Corbett and Andersen, Shute does not
make the assumption that the probability of learning is independent of the outcome.
This is obvious from the fact that there are four separate curves in Figure 3.
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By inspecting this figure, it is clear that equation (7) provides a good theoretical basis
for Shute's graphs.

8 Conclusion

This paper gives a general theory of how a student model should be updated, based on
the concept of a dynamic belief network. This work shows that the student modelling
approaches of Corbett and Anderson [4] and Shute [5] are actually special cases of this
general approach, even though this is far from obvious at first glance.
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