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Abstract. In this paper, 1 present a belief-net-based approach to student
modelling which assists an ITS make determinations as to the extent of the
student’s knowledge. This approach also has advantages for structuring and
ensuring the consistency of the student model. As well, the paper shows the
desirability of using dynamic belief networks for modelling the dynamic
evolution of the student’s state of knowledge.

1 Introduction

In discussing the approaches of human instructors, Collins and Stevens (1982)
State:
Rather we assume only a partial ordering on the elements in the teacher’s
theory of the domain. ... The teacher’s assumption is that students learn the
elements in approximately this same order. Therefore, it is possible to gauge
what the student will know or not know based on a few correct and
incorrect responses. )
In this paper, I present a belief-net-based approach to student modelling which
assists an ITS make similar determinations as to the extent of the student’s

knowledge. This approach also has advantages for structuring and ensuring the
consistency of the student model.

2 Belief Net Backbone

2.1  Probabilistic student modelling

For the purposes of this paper, 1 (minimally) assume that the domain may be
viewed as an abstract collection of topics (or "curriculum elements"), each of which

represents some piece of conceptual or skill knowledge which the student should
acquire. For each such topic, there is a corresponding student-knows probability

measure in the student model, e.g. p (student-knows (A)) = 0.7. In general, such .

measures of belief are dynamically updated as tutoring proceeds, e.g. see Corbett
and Anderson (1992); Shute (1995). This initial student-modelling approach allows
each probability in the student model to be updated independenty of all the others.
In the following section, I show why this is generally undesirable and why we need
to model the impact of a change of belief on related beliefs.
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22 The importance of the prerequisite relationship for structuring beliefs

- When building a domain model (based on an expert’s knowledge), there is really
no need to specify prerequisite relationships between parts of that knowledge, as
such relationships are only important for educational purposes and not for problem-

- solving within the domain. However, when student models are considered, the

~ prerequisite relationship becomes very important. In the earlier quote from Collins
and Stevens, the "partial ordering” is effectively a prerequisite relationship.

This prerequisite relationship is important both for modelling student beliefs

at any one point in time and for deciding how best to alter those beliefs over a

period of time. At any point in time, if knowledge of topic A is a prerequisite for

knowledge of topic B, then it is inconsistent to assert that both

p (student-knows (A)) = 0 and p (student-knows (B)) = 1. Expressed in terms of

predicate logic, we want to enforce the constraint: —student-knows (A) = —student-

knows (B), or student-knows (B) = student-knows (A) (equivalently). In probability

theory, this constraint is represented as a conditional probability: p (student-knows

(A) 1 student-knows (B)) = 1. This can also be expressed in a variety of logically-

2) equivalent forms, e.g.: p (studeni-knows (B) | ~student-knows (A)) = 0, which can
be paraphrased as: "You can’t know B if you don’t know A."

je 23  Student modelling via belief networks
e - g : .
id ' Probability theory provides the necessary methods for automated mnferencing based

on conditional probabilities. Belief networks (Pearl, 1988) provide a graphical way
of designing probabilistic models based on the concept of conditional probability.
“As well, the resulting structure is used for subsequent automated reasoning about
such models, in the most efficient manner for that structure. Being based on
probability theory, belief networks also allow the representation of constraints
which are not enirely certain. For example: p (student-knows (A) |
student-knows (B)) = 0.9 can be interpreted as "Most students who know B, also
know A." Being able to represent and reason with such knowledge is a valuable
advantage over approaches based on traditional logic alone. Although the earlier
description was only in terms of a pair of related topics, conditional probabilitics
allow the specification of relationships which are more complex than those given
above. For example, we can specify that both P and Q are prerequisites for R.

As well as numeric values for the conditional probabilities, we also must
specify the prior probabilities of all propositions which are not determined by the
conditional probabilities. These prior probabilities specify the system’s initial set of
beliefs about a (typical) student, prior to the first interaction with that student. As
the student uses the system, it directly updates its beliefs about the student’s
knowledge of topics where these are observable. These changes in belief are then
propagated through the belief net, changing the system’s belief in the likelihood
that the student knows other (as yet) unobserved topics.
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24 A backbone of conditional probability links

The use of conditional probabilities easily extends to much longer chains and
networks of prerequisite dependencies. For example, if we know that A is a
prerequisite for B, which is a prerequisite for C, and so on up until Z (say), then if
we discover that the student knows Z, then we don’t have to ask about the earlier
prerequisites. Likewise, if we find out that the student knows F, but not G, then we
don’t have to ask about A_E or H..Z. :

In the general theory of belief networks, there are no restrictions on the
structure of the network (apart from the prohibition of directed cycles). However,
in any system that uses a belief network, an actual structure must be specified. In
this paper, 1 propose that the appropriate belief network structare for an ITS is
based on two categories of nodes:

(a)  a belief net backbone, which links all the "student-knows” nodes together in-

a partial ordering, according to their prerequisite relationships;

(b)  a topic cluster for each node in the backbone, which consists of a single

"student-knows” node together with a standard set of additional belief nodes.

Most such nodes are local to the topic cluster, e.g. "student-interested-in

(topic)". That is, there is a separate instance for each topic. However, some

nodes are global in that there is only one instance in the whole student

model, e.g. student-overall-aptitude ().
Thus these two categories overlap in that each of the “"student-knows" nodes oceurs
once in the backbone and once in its topic cluster. However, the links (or "arcs”) .
between these nodes (i.e. the conditional probabilities) do not overlap.

This proposal has two advantages. Firstly, it gives the designer a standard
methodology for creating the structure of an ITS belief network, regardiess of the
particular domain. Secondly, there are computational advantages in that updates t
the beliefs in any one topic subnet only affects the other topic subnets via the
backbone, rather than there being any direct connection. In particular, this means
that the impact of belief updates in a given topic subnet on its "student-knows” -
node can be calculated locally by considering just the nodes in that topic subnet, |
rather than having to propagate such updates through the entire network in order
determine their nett results. The efficiency gained by such local computation is
very important during instructional planning, when the impacts of large numbers of
possible plans must be determined rapidly. (Once a plan has been chosen and is
executed, its effects update one or more topic subnets, and these effects must be
propagated through the backbone. Although computationally more expensive, such
updates occur much less frequently than those needed during planning.)

3 Dynamic belief networks

In ordinary belief networks, it is assumed that the properties of the external world,
modelled by the network, are unchanging. That is, even though the system may
gather information from the external world which causes it to modify its measures
of belief about items in that world, those items remain either true or false.
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Such an approach is clearly inadequate for student modelling in a tutoring
system, where we must be able to represent the dynamic evolution of a student’s
knowledge over a period of time. Dynamic belief networks (Dean and Kanazawa
(1989)) allow for reasoning about change over time. This is achieved by having a
sequence of nodes which represent the state of the external item over a period of
time, rather than having just a single temporally-invariant node. For real-world
continuous processes, the sequence of nodes may represent the external state as it
changes over a sequence of time-slices. For tutoring, it is often more useful to
represent changes in the student model over a sequence of interactions, rather than
time-slices, as the following example illustrates.

To avoid any possible misunderstanding, 1 point out that dynamic belief
networks model a (moving) snapshot of the student’s knowledge. They do not
model the evolution itself, in the sense of providing a history of the development of
such knowledge. Such a history may well be required, e.g. (i) for deciding to
revisit domain areas which were previously of major difficulty to the student; and
(ii) to dynamically adapt the system to the student’s learning style. Clearly, the
complete history of any dynamic model can be captured (and reviewed) by keeping
a tuple-based log of redofundo changes, analogous to the logging done by many
database systems. (Such a log may already be present in any system which is able
to resume a tutorial session following a system failure.) The subsequent usage of
such historical data for instructional planning is outside the scope of this paper.

3.1 A basic dynamic belief network: probabilistic modelling in the ACT
Programming Languages Tutor

The ACT Programming Languages Tutor (Corbett and Anderson (1992)) uses a

simple two-state psychological learning model with no forgetting, which is updated

cach time that the student has an opportunity to show their knowledge of a

production rule in the ideal student model. There are four parameters associated

with each rule:

pLy) the probability that a rule is in the learned state prior to the first
opportunity to apply the rule (i.e. from reading text);

p(D) the probability that a rule will make the transition from the unlearned
state to the learned state following an opportunity to apply the rule;

p(CIU) the probability that a student will guess correctly if the applicable rule is
in the unlearned state;

p(EIL) the probability that a student will slip and make an error when the
applicable rule is in the learned state.

In general, the values of these parameters may be set empirically and may vary

from rule to rule, but Corbett and Anderson describe a study in which these

parameters were held constant across 21 rules, with p(Ly) = 0.5, p(T) =04,

p(ClU) = 0.2 and p(EIL) = 0.2. Note that there are no conditional probabilities

linking different rules i.e. no prerequisite constraints. In an appendix to their paper,

the authors briefly state equations for calculating p(LIC)) and p(L|E ), which then

can be used to determine the probability that a production rule is in the learned
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state following a cormect (C)) or erroncous (E,) student response, at the nth
opportunity.

In this section, I illustrate the applicability of dynamic belief networks by
showing how Corbett and Anderson’s equations can be rederived from the dynamic
belief net shown in Figure 1. Structurally, this is the simplest possible dynamic
belief network for student modelling (where simplicity may be a virtue rather than
a vice). (In their paper, Corbett and Anderson did not describe how they derived
these equations. Even though they did not refer to dynamic belief networks, their
learning model is most likely mathematically isomorphic to Figure 1, leading to an
analogous derivation of the formulae below. My goal here is not just to rederive
their results, but to show that their formulae may be viewed as a special case of the
general approach of using dynamic belief networks.) To fully specify the dynamic
belief net in Figure 1, we need:

(@) the prior probability that a rule is in the learned state, prior to the first
opportunity, i.e. p(L,), as given by the authors;
(b) the conditional probabilities linking L, and C, in Figure 1, ie.:
. the probability of a correct response when the rule is in the learned
state just prior to the nth opportunity, ie. p(CJL,,) = p(ClL) =
1 — p(EIL), where the latter two parameters are used by the authors;
and
. the probability of a correct response when the rule is in the unlearned
state just prior to the nth opportunity, ie. p(ClHL,,) = p(ClU) =
1 — p(EIU), where the latter two parameters are used by the anthors.
(c)  the conditional probabilities linking L, , and L, in Figure 1, 1.e.:
. the probability of remaining in the learned state when the rule is
already in the learned state just prior to the nth opportunity, ie.
p(LIL.) = 1, where this value is specified by the authors’
assumption of no forgetting; and
. the probability of a transition to the learned state when the rule is in
the unlearned state just prior to the nth opportunity, i.e. pL L) =
p(T), where the latter parameter is used by the authors.
Given a value for p(L,,), it is easy to calculate p(C,) via:

pC) =pCL,) Py + PCHL.) PCL.o) )
This value can then be used to revise the belief in p(L,;) when C, is true (i.e. the
response is correct):

p(L,IC) = p(C,IL,,) pL,,) / p(C) (Bayes’ theorem) ¥
Finally, the revised belief in p(L,,) can be used to calculate the new belief p(L,),
when C, is true:

p(LnlCn) = p(Ln'I"xH) p (Lndlcn) + p(LnI—‘Ln-l) p (—'Ln—'l}cn) (3)
Under Corbett and Anderson’s assumption that p(LJL.,) = 1, equation (3)
becomes:

PLIC) = p LlC) + PAL,) P (LyylC)
or equivalently (rewriting in terms of their original parameters).

p(L,IC) =p L,IC) + p(T) (1-p LIC))
which is the same as their equation [1]. Likewise, equation (1) above can be
substituted into equation (2) and then also be rewritten in terms of their original
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Initial state n’th opportunity n+1’th opportunity

state

Figure 1 A basic dynamic belief network for student modelling

. parameters:

pL,.!C) = p(CL) p(,,) / (p(CL) pL,) + pCU) pU,,))
which is their equation [3]. For space reasons, I omit the analogous derivation of
equations for p(LJ~C) and p(L,,mC), equivalent to Corbett and Anderson’s
equations [2] and [4].

{32 A more elaborate dynamic belief network

Figure 2 shows a somewhat more elaborate dynamic belief network for a topic
cluster, corresponding to the topic cluster attributes introduced earlier in this paper.
This figure is intended to further illustratc the general approach, rather than
altempting to be a comprehensive network. As before, each arrow represents a

- conditional probability which is usually a cause-effect relationship.

4 Diagnosis: determining the state of student knowledge

. The earlier guote from Collins and Stevens described how human teachers are able

to gauge the extent of a student’s knowledge based on a relatively small number of

probing questions. This teaching strategy may be modelled as a problem-solving

procedure within the framework of a classic Al diagnostic task. In particular, de
Kieer and Williams’s (1987) research on their General Diagnostic Engine (GDE)
system is helpful, even though it cannot be used directly as it is based on some
assumptions which do not apply to student modelling. That research is based on the
idea of minimising the number of measurements (analogously, minimising the
number of questions asked of the student) by making a series of measurements,
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Figure 2 An example topic cluster, in a dynamic belief network

each of which maximises the expected amount of information gained by that
measurement. Technically, minimising the expected entropy (H) of the belief
network after making that measurement: H = -2, p, log p;. So, the expected entropy
(H,) after asking a student whether they know topic ¢, is given by the weighted
sum of the two possible responses:

H()=p¢)H(E) + p () H (1)

One of the difficulties faced by the GDE procedure is that the number of possible
combinations of faults grows exponentially with the number of components.
Fortunately, for student diagnosis, the number of possible combinations is far less.
This is because, whenever an ITS considers a possible diagnosis involving a
particular faulty node, then all subsequent (partially ordered) nodes must also be
faulty (at any one point in time). By comparison, in an electronic circuit,
subsequent nodes need not be faulty and so there are more cases 10 consider.

For example, consider a simple chain of four items: A — B — C — D. If this
is taken as representing an electronic circuit of buffers, then there are 16 (=29
possible combinations of possibly faulty components. Alternatively, if this chain is
a belief net backbone representing the prerequisite relationships linking four topics,
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then there are only five combinations which model possible states of the student’s
knowledge, as given by the following setst {}, {A}, {A,B}, {A,B,C},
{A, B, C,D}. Such linear growth is clearly better than exponential growth,
especially when creating domains containing hundreds of topics.

I now give a small example to illustrate the approach. In this example, I
omit the "student-knows" predicate for conciseness and clarity, e.g. "p (A)" should
be taken as "p (student-knows (A))". Example: A - B — C — D, with

p (A) =075 * PorlA) = 075
p(BIA) =075 2 PriedB) = 0.56
p(CIB) =075 “ Pprod©) = 042
p(@DIC) =075 o PpriaD) = 032

There are four topics, so there are four possible questions which could be asked.
The expected entropy for each of these possibilities are calculated as:

H(A) = p (A) H(A) + p(-A) H-A) =098

H.(B) =p (B) H(B) + p(-B) H-B)  =10.67

H.(C) =p (C) H(C) + p-C) H-C) =069

H,D) = p (D) HD) + p-D) H-D) =095
These values confirm what one would expect intuitively in this case, i.e. that more

- information is gained by asking about B or C, rather than A or D. More precisely,
topic B has the lowest expected entropy (i.e. highest expected gain of information)

and so should be asked first. The student’s reply can then be used to update the
probabilities in the student model. These revised probabilitics can then be used in
subsequent calculations of expected entropy, in order to determine which topic
should be queried next. The resulting dialogue models the behaviour of the human
teachers described above.

5 Related research

Most existing ITSs use fairly coarse-grained measures for representing the student’s
knowledge. For example, some systems associate one of three values with each
domain topic: student knows, student does not know, and not sure if student knows
or does not know. Such a coarse-grained measure limits the modelling power of the
system and so limits its decision-making capabilities.

For example, consider a situation in which an ITS has to choose between
two equally important topics to teach next (both with prerequisites satisfied).
Assume that the probability that the student already knows the topic is 0.4 in one
case and 0.7 in the other (based on observations of the student). Most systems
would be forced to represent both these as "not sure if student knows or does not

- know", and thus could pick either topic to teach next. This is an inferior approach,

as it is clearly better to be able to distinguish the two. For example, if the student
has been doing well so far, then we may wish to cover the topic which the student
appears more likely not to know. On the other hand, if the student has been doing
poorly, then we may wish to work on the topic which the student is more likely to
know, in order to improve their self-confidence.
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It is only recently that ITS researchers have started investigating the use of
probability theory for student modelling. Villano (1992) provides a good but very
brief discussion of some of the basic issues in using a belief network for student
modelling, such as the need to obtain the structure, prior probabilities and
conditional probabilities for the belief network — issues which are also covered in
this paper. Pirolli and Wilson (1992) discuss the important diagnostic issue: how to
estimate probabilistic student modelling parameters from complex events. The last
section of their paper also addresses the basic idea of using belief networks for
student modelling. While limited in scope, this section illustrates these ideas, by
presenting screen snapshots from Hugin (a belief network shell) showing three
different states of a small (seven node) belief network. Shute’s (1995) work on
updating probabilistic measures of a student’s skills is important for the future
development of more sophisticated student models based on belief networks, even
though she just considers the updating of individual measures in the student model.
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