
Proceedings of the IASTED International
Conference Internet and Multimedia Systems and Applications
October 18-21, Nassau, Bahamas

298-192
- 1 -

FRAMEWORK FOR COLLABORATIVE MULTIMEDIA APPLICATION
BASED ON CORBA

SEUNGGEUN LEE

Dept. of Computer Science & Engineering,
Inha University, Inchon, Korea

sglee@selab.inha.ac.kr

SEIHOON LEE
Dept. of Computer Engineering

Inha Technical College, Inchon, Korea
seihoon@true.inhatc.ac.kr

CHANGJONG WANG

Dept. of Computer Science & Engineering,
Inha University, Inchon, Korea
cjwangse@dragon.inha.ac.kr

Abstract

In recent years, as Information superhighway and
advancement of computing power, it has been increasing
requirements about CSCW that is based on the distributed
multimedia. And, because the policy of interaction in
collaborative application is implemented in application,
application must be implemented again if the policy of
collaborative application is changed. It is big problem in
environment that policy is changed dynamically.

We design CORBA based framework for collaborative
distributed multimedia application. Framework support s
session management, event notification and transmission of
multimedia stream data for collaborative multimedia
application. And framework support the functionality which
developer can redesign policy of collaborative application
dynamically. Especially, because CORBA offers a useful
Framework to develop the distributed application, the
developments of distributed multimedia application based
on CORBA is progressed actively.

Keyword : Collaborative Systems, Distributed
Multimedia, CSCW, CORBA

1. Introduction

In recent years, as Information superhighway and
advancement of computing power, it has been increasing
requirement about CSCW(Computer Supported Cooperative
Work) that is based on the distributed multimedia of video
conference or VOD[1,2,3]. Session management manages to
interaction of multi users by coordination policies[3,4] in
CSCW. Currently, developers typically implement

subsystems to perform session management on a per-
application basis[2]. So, coordination policy has problem
which is not changeable after application developing. Also,
this trend has in extra three characteristics of current session
management systems, which are problematic. The first
characteristic is that applications developers typically
implement subsystems to perform session management
when they build an application. There is little cooperation
between applications or code reuse between developers.
Second session management itself is subordinate to the
centerpiece task the applications in a particular collaborative
application are often not very robust, flexible, or powerful.
Usually the session management facilities provide the
minimal level of functionality to allow the application to
perform in a collaborative setting. The last characteristic is
per-application re-implementation of session management
typically means that three are no facilities for altering
session management behavior on a global scale. All of these
problems are similar to those encountered by early
applications before the advent of common programming
interface for developing, for example, graphical applications.
Common APIs enables applications built on those APIs to
be developed more quickly and with greater standardization
than would be possible otherwise.

In this paper, we’ll design CORBA based framework
for collaborative distributed multimedia application. On the
designed framework, application developer can define
function of coordination policies of session management
dynamically. We apart coordination policy from application
implementations. This method is participants explicitly adopt
roles, and coordination policies are specified in terms of
roles in widgets. Policies are implemented each collaboration
site during execution. This method become to changeable
coordination policies not only developing course, but also

Proceedings of the IASTED International
Conference Internet and Multimedia Systems and Applications
October 18-21, Nassau, Bahamas

298-192
- 2 -

execution, and make a solution the existed problem of session management.

2. Related Work

2.1 CORBA Telecom
The CORBA suggested by OMG is the applications

development standard using distributed object technology,
its current version is 2.3[5]. In the part of application
development, developers are able to improve the
interoperability of system and get advantages of simplifying
the system implementation. Especially, CORBA Telecom is
defined for the development of audio/video application. Fig
1 shows the basic CORBA Telecom architecture[6].

Control and
Management

Object

Stream
Interface

Control Object

Flow Data
End-point
(source)

Stream
Adaptor

Basic
Object

Adaptor

Stream
Interface

Control Object

Basic
Object

Adaptor

Flow Data
End-point
(source)

Stream
Adaptor

Object Request Broker

Stream
control

operations
data
flow

data
flow

Stream
control

operations

Flow

Fig 1. CORBA Telecom architecture

CORBA Telecom defines Flow Object specified a
sequence of frames, Stream Object which is a set of Flows
between Objects. The control of audio/video data is
accomplished by Stream Interface Control Object through
ORB. The actual Audio/Video Flow is specified in the form
of accomplishing through Stream Adapter out of ORB. The
definitions of CORBA Telecom make us use the benefits of
distributed multimedia application development. As a result,
it is expected to be more active in the distributed multimedia
application development.

2.2 Collaborative System
Multiple users create opportunities for collaboration,

rich and potentially unexpected interactions occur between
users and applications-all of these contributes to the
dynamic nature of collaborative software. The dynamism
present in collaborative systems approaches intentionally
the fluidity and richness of interactions among people in the
physical world. Many applications require flexible session
control[2,3,7] to allow the participants to dynamically join
and leave a session, to take multiple roles simultaneously,
and to smoothly shift between different roles. Many social
rules are better built into the software as mechanical
protocols to ensure that they are followed by all the
participants, while some others are better left to the
participants as social protocols to obtain more flexibility.
This is opposed to traditional single-user or distributed
systems in which human-computer interaction patterns are
generally more predictable and can be governed by pre-

coded mechanical rules.

Coordination policies are usually sensitive to the work
style and organizational structure of individual groups.
Different groups are often governed by different policies,
and even the same group may need different coordination.
Development of collaborative systems is typically heuristic
in that the definition of coordination policies often involves
intensive interactions between end users, developers and
scientists from many fields. This is in contrast to a once-
and-for-all solution that defines everything right from the
beginning. With regard to this dynamic nature of
collaborative systems, it is vital to start with a software
architecture that is flexible enough to model collaborations
and to accommodate the evolution of coordination policies
both during the development of experimental systems and at
runtime by the end users.

3. Design of CORBA based Framework

3.1 Overview
This framework is composed of session manager,

event messenger, and communication manager. Fig 2
describes proposed framework for CORBA based distributed
collaborative multimedia applications.

Operating System & Physical Network

Session Manager
Event Messenger

Communication Manager

Video Conferencing, Video-on-Demand
Distance Learning System, Whiteboard

Distributed Environments

Framework

Collaborative
Multimedia Applications

Object Request Broker and COSS

Fig 2. Overall structure of proposed framework

Session manager performs the interoperation with
other users and controls of event messenger and
communication manager according to coordination policy
defined by user. Event messenger delivers the messages
reached by session manager to the users who are the same
collaboration and receives the messages reached by other
users. Communication manager takes charge of Audio/Video
data processing to manage Stream Object and Flow Object.

The framework is designed with CORBA Object on
ORB. Actually video conferencing or distance learning
system applications is running in framework. Through the
development regardless of coordination policies which
define the interoperation with other users, the changes of

- 3 -

coordination policy in the running have no effects to
applications.

3.2 Session Manager
On the base of user definition policy, Session manager

performs the activity conforming to each policy. Session
manager is composed of Group Factory, Notification Module,
Group Manager and Group Context. Group Factory
maintains group lifecycle and lists of active groups. For
request of group creation by user, it creates Group Manager
and Group Context which maintain group information. If
users want to participate the active group, they can get the
object reference of group manager. Group manager maintains
group context and perform handling for interaction among
participants. Group Context maintains information of
participants, of administrator, floor control. If participant
join/leave the group or changing floor control, Group
Context is switched and event is delivered to all participants
by Notification Module. Fig 3 is Session Manager.

Session Manamger

Group Pool

Group
Manager

Group
Manager

Group
Manager

Group
Factory

Group Context

Notification
Module

Fig 3. Session manager

Group Context maintains group states. Group context
consists of participants’list, chairman information, token
owner information and other information about group. If
group context switching is raised, engine send changed
information to all participants through event messenger.
Group participants play a role of chairman, member and
inspector. Role is received by chairman when he takes part
in group. The operations of group destroy and token control
can be controlled by chairman.

Users can send message to participants when he has a
token. In order to send messages, users request a token to
chairman. If inspector request a token, Group Manager
sends a error message to user through Event daemon. Fig 4
is interface of Group Management

interface GroupManager {
 boolean giveRole(in string passwd, in string ClientID, in Role role);
 boolean requestToken(in string ClientID);
 boolean releaseToken(in string ClientID);
 boolean giveToken(in string ClientID);
 boolean fetchToken(in string passwd, in string ClientID)
 Participant getParticipantfomation(in string ClientID);
 boolean TokenOwner(in string GroupID);

 ParticipantList getParticipantList(in string ClientID);
 boolean SendMessageToAll(in string ClientID, in any Message);
 Participant GetChairmanInfo(in string ClientID);
 Participant TokenOwnerInfo(in string ClientID);
 Participant GetGroupmemberInfo(in string ClientID);
 Participant GetInspectorInfo(in string ClientID);
}

Fig 4. Group Manager interface

And, Group Manager contains coordinator which
maintains each coordination policy of group. Group
administrator, who mainly made group, defines group policy
with PDL. PDL is defined for the description of group policy.
The defined group policy by PDL(Policy Definition
Language) is translated from rules and facts by translator.
Fig 5 lists the templates.

(deftemplate ROLELIST (multislot rolelist))
(deftemplate STAGELIST (multislot stagelist))
(deftemplate OBJECTLIST (multislot objectlist))
(deftemplate EVENTLIST (multislot eventlist))
(deftemplate STAGES (slot (stage)))
(deftemplate RULE (slot tagetlist)
 (slot mode)
 (slot datatype)
 (slot WHEN)
 (multislot by)
)

Fig 5. Templates used by translator

Translator uses templates for this process. Rule and
fact are inserted to knowledge base, and used for
interactions among participants. Reasoning engine is
matching user events with rule, and call actor which is
implementation of policy of collaboration. It is implemented
in Java object.

Coordinator

Editor Translator

Actor
Knowledge Base

Coordination
Manager

Working Memory

Reasoning Engine

PDL User Events

Fig 6. The structure of Coordinator

It can be called by Reasoning Engine in runtime. If
group policy is changed in runtime, Reasoning Engine only
calls the other actor by updating Knowledge Base. So,
although group policy is changed, applications don’t have
to be changed or re-implemented. We use JESS engine(Java
Expert System Shell) in Reasoning engine.

3.3 Event messenger
In CORBA Event Service, events raised in supplier are

sent to all consumers such as broadcasting type. This

- 4 -

broadcasting type is expensive because some consumer may
not need some events. And, total system efficiency is
dropped. To solve this problem, we designed event
messenger that sends events to users who are interested in
those. To accomplish these operations, event messenger
uses filtering process. Event’s consumers register event
type that he wants to receive to service using interface.

We designed two interfaces for filtering process.
RegistrationAdmin interface defines the operations that
event supplier/consumer registration and maintenance
information in service. FilterAdminis tration interface defines
the operations that filter creation/remove, filter/filter list
maintenance.

3.4 Communication Manager
We design a stream based communication manager

which support continuous media transmission during the
user participated in distributed multimedia application. This
manager’s functionality is subset of CORBA Telecom.

Communication manager provides multicast
transmission based on stream among clients. Stream
communication service is composed of connector manager,
communication factory. Port object, Stream object, and
Connection object are dynamically created by request of
communication manager and provide of multicast of stream.
In order to transmit continuous multimedia data, user must
create Port object using Communication Factory. Connector
manager creates server side port object to receive stream
data. Two ports, user’s port and server side port, are bound
by stream object. Stream object controls transmission of
stream data between user port and server side port. If
session manager or each user request transmission of
continuous media, connector manager creates two port
object and Stream object.

One Port object is data supplier and the other Port
object is data consumer. Connection object is created after
Stream objects are created, and maintains reference of
Stream objects. Also, it performs the copy operation input
stream to output stream. This Connector object is used for
multicasting transmission of steam data.

Ports perform real media transfer. The basic control of
ports is executed by stream object. The method related to
stream transmission used by devices using transport
interface. Port control interface is described with CORBA
IDL, and provides control method of stream endpoint’
behavior. Port control interface provides operations. : Lock(),
unlock(), Start(), Stop().

Transport interface provides method used in

transmission/reception of continuous media data in devices.
This methods are added after compilation and are
write_frame(), write_header(), read_frame(), read_header()
and so on. Stream object provides abstraction of stream to
application or other services. Applications control
transmission of stream using this method. Fig 7 describes
communication manager.

User interface

Fa
ct

or
y

.......User 1 User NUser 2

port 1 port 2 port N

.......

Connector
Pool

.......

port 2port 1 port N

stream
object

data
transfer

Connector Manager

Fig 7. Design of Communication manager

4. Lecturing System us ing framework

In this chapter, we implement video lecturing system
using designed framework. Environments for implementation
are following.

• ORB Software : IONA OrbixWeb 2.3

• Developing Tools : Java Development Kit 1.1.7

• Real time Movie : software encoding/decoding module of
MPEG-1

Lecturing system consists of whiteboard and video
conferencing. The video/audio data are transferred by media
stream server and communication manager.

Lecture request session manager in order that lecture creates
group named by “Overview of CSCW”. We supposed one
lecturer two student, one participant and stage of
instructions : Teaching, Questioning, Discussing, Reporting.
Group attribute is protected mode, so participant must use
password. Group policy are defined by follow.
• If stage of instruction is Lecturing, request of floor control

- 5 -

from students is denied.
• If student has no floor control, voice can’t be transmitted
to the others.

Then, As Fig 8, Group policy is describe using PDL.
Fig 8 is translated with rules and facts by translator.

Classroom : “Overview of CSCW”
 ROLES : Lecturer Student Attendant
 STAGES : Teaching Question Discussion Reporting
 OBJECTS :
 OBJECT : video Stream USING_BY : ALL W
 OBJECT : sound Stream USING_BY : ALL W
 OBJECT : whiteboard Stream USING_BY : ALL W
 P_N : 4
 Lecture => 1
 Student => 2
 Attendant => 1
 PROTECTED : $as!123
 TOKEN_CONTROL
 RULES :
 RULE :
 LOCAL : IN :- REQUEST_TOKEN WHEN Teaching BY Student
 => “Deny Request”
 LOCAL : IN :- sound WHEN Teaching BY Student Attendant
 =>“Prohibit Speech”

Fig 8. Group policy described by PDL

Students can join Session View interface. Fig 9 is Session
View. Session View presents information of active group list,
function of group registration, unregistration, leave, join and
query of group information.

Fig 9. Session View

Fig 10 is execution view of educational system. Lecturing
system is composed by video stream and audio stream.
Additionally, whiteboard is used in instruction. Video stream
is transmitted regardless of floor control, but audio stream
and whiteboard data can be transmitted only by participant
having floor control.

Fig 10. Lecturing System

5. Conclusion

Our approach is different from previous work in that
we explicitly divide coordination policy and implementation.
This separate process called by coordinator orchestrates the
application tools as well as other computation modules to
make a collaboration. Because Coordinator uses reasoning
engine, coordination policy is added easily and it is adapted
in interaction among participants dynamically. Also, session
manager and communication manager help developers to
develop CSCW in web environment. The point of our work
is not to implement communication manager based full
CORBA Telecom specification, but to provide a testbed for
further study of how coordination policies are defined and
how defined component of framework support development
of collaborative distributed multimedia application.

References

[1] L. Fuentes and J. M. Troya, A Java Framework for Web-
based Multimedia and Collaborative Applications, IEEE
Internet Computing, 1999, 55-64
[2] D. Li, R. Muntz, COCA: Collaborative Objects
Coordination Architecture, ACM CSCW ’98 Proceedings,
1998.
[3] N. Kim, C. Wang, “CAFÉ: CORBA-based Framework for
Distributed Multimedia Applications,” Proceddings of the
XV. IFIP World Computer Congress, 1998.
[4] H. P. Dommel, J. J. Garcia-Luna-Aceves, Group
Coordination Support for Synchronous Internet
Collaboration, IEEE Internet Computing, 1999, 74-80.
[5] OMG, CORBA Telecom Specification, OMG Document,
1998.
[6] OMG, The Common Object Request Broker: Architecture
and Specification Revision 2.0, OMG Document, 1997
[7] W. Edwards, Policies and Roles in Collaborative
Applications, ACM CSCW ’96 Proceedings, 1996.

Acknowledgements

The authors wish to acknowledge the financial support of University
Fund by Korean Ministry of Information & Communication in 1998.

