
HDM — A Model-Based Approach to
Hypertext Application Design

FRANCA GARZOTTO, PAOLO PAOLINI,

Politecnico di Milano

and

DANIEL SCHWABE

Pontiffcia Universidade Cat61ica do Rio de Janeiro

Hypertext development should benefit from a systematic, structured development, especially in

the case of large and complex applications. A structured approach to hypertext development

suggests the notion of authoring-in-the-large. Authoring-in-the-la rge allows the description of

overall classes of information elements and navigational structures of complex applications

without much concern with implementation details, and in a system-independent manner. The

paper presents HDM (Hypertext Design Model), a first step towards defining a general purpose

model for authoring-in-the-large. Some of the most innovative features of HDM are: the notion of

perspective; the identification of different categories of links (structural links, application links,

and perspective links) with different representational roles; the distinction between hyperbase
and access structures; and the possibility of easily integrating the structure of a hypertext

application with its browsing semantics. HDM can be used in different manners: as a modehng
device or as an implementation device. As a modeling device, it supports producing high level

specifications of existing or to-be-developed applications. As an implementation device, it is the

basis for designing tools that directly support application development. One of the central

advantages of HDM in the design and practical construction of hypertext applications is that the

definition of a significant number of links can be derived automatically from a conceptual-design

level description. Examples of usage of HDM are also included.

Categories and Subject Descriptors: H.2. 1 [Database Management]: Logical Design—data

models; H.3.4 [Information Storage and Retrieval]: Systems and Software; H.4. 1 [Informa-

tion Systems Applications]: Office Automation; 1.7.; [Text Processing]: Miscellaneous—

hypertext

General Terms: Design, Languages

Additional Key Words and Phrases: Derived links, HDM, Hypertext design models, Hypertext

applications, Hypertext structures, models

This work was sponsored in part by the Commission of the European Communities, in the scope

of the HYTEA Project (P 5252) of the ESPRIT II Program. D. Schwabe developed this work while

on sabbatical leave from PUC and was partially supported by CNPq-Brasil.

Authors’ addresses: F. Garzotto and P. Paolini, Department of Electronics, Politecnico di Milano,

Piazza Leonardo da Vinci 32,20133 Milano, Italy. Phone: + 39-2-23993520; fax: + 39-2-23993411;

email: garzotto@iipmel l.polimi.it; paolini@ipmell. polimi.it; D. Schwabe: Departamento de In-

form~tica, Pontificia Universidade Cat61ica do Rio de Janeiro, R. M. de S. Vicente, 225, CEP

22453, Rio de Janeiro, Brasil. Phone: + 55-21-274 4449; fax: + 55-21-274 4546; email:

pucrjditi!inf.puc-rio. br.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01993 ACM 1046-8188/93/0100-0001 $01.50

ACM Transactions on Information Systems, Vol. 11, IWO. 1, January 1993, Pages 1-26.

2. F Garzotto et al.

1. INTRODUCTION

1.1 Background

The degree of success of a hypertext application is directly related to the

author’s ability to capture and organize the structure of a complex subject

matter in such a way as to render it clear and accessible to a wide audience.

To control the potential explosion of the number of links, a hypertext applica-

tion does not really interconnect everything, but rather tries to directly

interconnect only the most important and meaningful parts of the informa-

tion so as to convey the overall meaning in a more natural way.

In a rational design approach, a hypertext application developer faces at

least two different (but strongly correlated) task categories: “global” tasks,

such as defining overall classes of information elements and navigational

structures of applications, and “local” tasks, such as filling in contents of

nodes. This is very similar to what happens when developing a highly

modular software system: designing the topology and the interconnections

among modules is different from writing the code for the content of the

modules themselves. By analogy with software engineering, we use the

following terminology: authoring-in-the-large, to refer to the specification and

design of global and structural aspects of the hypertext application, and

authoring-in-the-small, to refer to the development of the contents of the

nodes [16, 17].

Authoring-in-the-small is very much related to the specific application

area, while authoring-in-the-large has common characteristics across many

different applications in a given application domain. Authoring-in-the-small

is strongly dependent on the tools used for implementation and on the

medium used for storing information (e.g., putting the text in a node is much

different than putting an animation, or a sound, or a picture). Authoring-in-

the-large can be at some extent independent from these aspects. However,

authoring-in-the-large and authoring-in-the-small are typically very interwo-

ven, and influence each other, much more than programming-in-the-large

and in-the-small in the current software engineering practice.

This paper presents a model for authoring-in-the-large, named HDM—

Hypertext Design Model [16, 17, 18, 36]. HDM prescribes the definition of an

application schema, which describes overall classes of information elements

in terms of their common presentation characteristics, their internal organi-

zation structure, and the types of their mutual interconnections. A schema,

therefore, captures semantic and structural regularities in the representation
structures for a given class of applications. Once a schema has been specified,
the model also allows it to define a particular application, by providing

primitives to describe a schema instance, i.e., actual instances of information

classes and of connection types. In defining a schema instance, a significant

number of connections can be left implicit, since they can be automatically

derived from a conceptual-design level description.

HDM is mainly a modeling device. It provides ways of describing, concisely

and in a system independent manner, existing or to-be-developed hypertext

applications; it helps the author to conceptualize a given application without

ACM Transactions on Information Systems, Vol 11, No. 1, January 1993

HDM — A Model-Based Approach to Hypertext Application Design . 3

too much regard to “implementation details”; and it can be used as a

communication language between designers, implementors, and users.

Additionally, HDM can be used to generate running implementations of

hypertext applications [26, 36]. From this perspecl;ive, the model is a first

step towards the development of application generators, in a similar way as

CASE tools are used in software engineering environments. Implementation

of an HDM application requires the definition of a browsing semantics, which

specifies dynamic behavior and visualization properties of HDM representa-

tion structures. HDM is not closed with respect to any particular browsing

semantics. So far, we have specified a default browsing semantics, more

suitable for relatively simple card-oriented classes olf systems.

1.2 Current Approaches to Hypertext Application Design

In the very closely related data base design field, models have played a

crucial role in changing the data base development task from being a “hand-

crafted” (and sometime inconsistent) activity into becoming a structured and

rational process, based on well defined design methods [46]. Database models

were born as means to define useful abstractions on large amounts of raw

information (“logical” data models) and to express the intrinsic application

oriented data semantics (“conceptual” and “semantic” data models [6, 211).

However, the peculiarities of hypertext (e.g., the role of links, the complexity

of structures, the multimedia facility, the navigation paradigm, etc.) require

the development of brand new models, specific for peculiar features of hyper-

text.

In the hypertext field, some approaches attempt to explicitly model the

semantics of specific application domains by adopting predefine representa-

tion structures which reflect such “deep” semantics. g-IBIS [11], for example,

is a hypertext tool for exploratory policy discussion. It helps capturing,

storing, and retrieving the large amount of informal information which

express the rationale of a system design process. g-IBIS explicitly models the

semantics of its domain by assuming a well defined theory of the design

process and by providing a set of specific node and link types that represent

conceptual objects in the domain model. Thus g-IBIS encourages to share this

model while seeking to discourage less disciplined argumentation modes.

Other works should be regarded more as “system” oriented models than as

application oriented design models. They are attempts to define in an unam-

biguous, rigorous way some important abstractions found in a wide range of

existing (and future) systems rather than of existing (and future) applica-

tions. The goal of the Dexter Hypertext Reference Model [20] is to serve as a

standard against which to compare and contrast the static information

structures and the functionalities of different hypertext systems. Its building

blocks for defining the static aspects of a hypertext system are low level

objects: nodes, links, and anchors. The Dexter model purposefully does not

model the content and structure within the components of hypertext net-
works. It treats them, as well as their layout and visualization properties, as

being outside the model per se. Garg’s set-theoretical model [14] is a formal-

ization of hypertext networks viewed as static, syntactic structures, and

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

4. F, Garzotto et al,

provides a mathematical framework to define abstraction mechanisms useftd

to describe or derive static syntactic properties of hypertext networks. Garg’s

model (as other similar ones [35]) assumes low level objects as building

blocks, such as nodes (and even node components), and node-to-node links.

The Trellis model [39] is mainly a “behavioral” model for hypertext. Hyper-

text networks are modeled as Petri nets, and various browsing semantics

(that is, how information is to be visited) are discussed in terms of Petri nets
computations.

Tompa [41] adopts a hypergraph formalism to model generic hypertext

structures, to formalize identification of commonalties in these structures,

and to directly refer to “groups of nodes” having a common link semantics. A

dynamic behavior is also specified through the notion of node markings, with

an end result much similar to the Trellis model.

Other, less formal, approaches emphasize preferred topological structures

as building blocks to create the structure of hypertext networks. This require-

ment is often embodied in a concrete system implementation, and enforced by

the editing tools the system provides. In Hypercard [3], for example, linear

structures play a central organization role. Even if each card can be arbitrar-

ily linked to any other card, each Hypercard node must belong to a sequence

(“stack”) of cards, and links to the successor node, to the first and the last
node in the sequence are automatically provided by the system. Guide [7] also

prescribes the extensive use of linear structures to clarify the organization of

hyperdocuments. KMS [2] prescribes the extensive use of hierarchical struc-

tures to organize information, in order to encourage a top-down, step-wise

design of hyperdocuments. Each KMS node (frame) belongs to a single

hierarchy; however, KMS also allows “special links” that are cross-hierarchi-

cal and induce a more complex topology on the network of nodes.

Several existing approaches provide “template” facilities to help designers

generate hypertext structures more easily and systematically, by allowing

authors to create multiple copies of individual structures all sharing a

number of common properties. HyperCard, for example, has “backgrounds”

as the lay-out and linking template. The lay-out and button properties of a

background are inherited and shared by all the different nodes sharing that

background. NoteCards’ notion of (hierarchy of) node types and link types

lets writers create as many instances of a class of hypertext nodes as they

require [19]. Object Lens [28] encourages a similar style of node creation, by

providing an object-oriented environment which allows definition of tem-

plates corresponding to high-level abstractions in an application domain. IDE
[27], an extension of NoteCards, is an interactive design and development

system which assists designers with the process of creating complex hyper-

text material, mainly (but not only) for instruction purposes. IDE provides

built-in representation primitives for describing the substance of a course and

the rationale for the course design in terms of hypertext structures. IDE

moreover, provides a number of domain independent mechanisms (“structure

accelerators”) that facilitate the rapid and accurate creation of regular net-

work patterns in hypertext by permitting authors to create entire webs of

nodes and links in a single operation. The template facility in Intermedia [38,

ACM Transactions on Information Systems, Vol 11. No. 1, January 1993

HDM —A Model-Based Approach to Hypertext Application Design . 5

48] plays a similar role as IDE structure accelerators. Stotts et al. [40]

introduce the notion of style templates to denote styles of structuring and

browsing Trellis-based hypertext. Different style templates correspond to

different translations from generic authoring notations of hypertext content

elements and linkages into structured Trellis documents with a specific

browsing behavior. Translations are basically mappings from string-gram-

mars (the authoring language) to graph grammars (the abstract language for

Trellis documents).

Other approaches help to organize and modularize existing hypertext

material. Trigg’s Guided Tours and Tabletops [29, 42], for instance, are

extensions of NoteCards which help designers to groulp and visualize existing

hypertext material in a way that it is more appropriate for a particular

reader, and to provide preferred paths through a hyperbase.

The remainder of the article is divided as follows: Section 2 discusses the

advantages of the model-based approach to authoring in the large and

presents HDM in detail; Section 3 gives an example of HDM use in hypertext

application design; Section 4 draws the conclusions, by comparing HDM to

other approaches, by evaluating the model’s utility on the basis of a number

of experiences done so far, and by outlining our future work.

2. A MODEL-BASED APPROACH TO AUTHORING-IN-THE-LARGE

2.1 Motivations

There are many advantages in having a design model for hypertext applica-

tions, which we summarize here.

Improvement of communication. A design mode-l provides a language

which can be used by an application analyst to specify a given application.

Thus it facilitates the communication between the analyst and the end user;

between the analyst and the system designer; and between the system

designer and the implementor. At the very least, a basis for discussing the

similarities of hypertext applications exists. To paraphrase Halasz et al. [20]:

Hypertext Application Models can be regarded as an attempt to provide a

principled basis for answering questions such as “what do hypertext applica-

tions such as Voyager’s Beethoven’s 9th Symphony [47], Harvard University’s

Perseus [30], ACM’s compilation Hypertext for Hypertext [37], Eastgate’s

Elections of 1912 [4], have in common?” “How do they differ?”

Development of design methodologies and of rhetorical styles. Design mod-

els provide a framework in which the authors of hypertext applications can

develop, analyze, and compare methodologies and rhetorical styles of “hyper-

authoring”, at a high level of abstraction, without having to resort to looking

at the detailed contents of units of information or at their particular visual-

izations.

Reusability. As a matter of fact, the availability of a modeling language

paves the way for (partial) reuse of the back-bone structure of applications,

ACM Transactions on Information Systems, Vol. 11, No. 1, January 1993.

6. F, Garzotto et al.

since model-based specifications capture the “essential semantics” of applica-

tions, and can therefore be reused when the semantics of two applications are

similar enough.

Providing consistent and predictable reading en vironrnents. It is clear

that tools for specifying hypertext structures can help authors to avoid

structural inconsistencies and mistakes [8], and that applications developed

according to a model will result in very consistent and predictable representa-

tion structures. As a consequence, navigation environments will also be

predictable, thereby helping readers to master complex documents and reduc-

ing the disorientation problem [31, 33, 43].

Use b-v design tools. Design models are the basis for the development of

Design Tools [45] that support a systematic, structured development process,

allow the designer to work at a level of abstraction which is closer to the

application domain, and provide a systematic translation process to the

implementation level.

2.2 HDM Primitives

HDM is a model to describe hypertext applications. It has a number of

peculiarities that make it overall different from other models, but at the same

time borrows many of its detail features from existing models. From a

terminological point of view, we had two extreme choices: either to create a

set of brand new terms for all the features of the model, or to use only

preexisting terms (and concepts), perhaps reassembled in a novel fashion. We

have chosen a compromise course: some of the terms are new, others are

taken from preexisting models in the database or hypertext field. Preexisting

terms should be understood with the caveat that the reader should never

assume that our use of the term exactly corresponds to the notion that he is

already aware of.

An HDM application consists of sizeable structures of information chunks

called entities. An entity denotes a physical or conceptual object of the

domain. Entities are grouped in entity types. An entity is the smallest

“autonomous” piece of information which can be introduced or removed from

an application. In this context, “autonomous” piece of information means that

its existence is not conditioned by the existence of other information objects.

In HDM, only entities are autonomous, while components and units (see

below) are not, as discussed in the following sections.
An entity is an hierarchy of components. Components are in turn made of

units. Each unit shows the content of a component under a particular

perspective (see proper subsection for details and examples). Entities there-

fore derive their information content from their components, which in turn

derive it from their units. Units are the smallest chunks of information which

can be visualized in an HDM application, and they have a lot in common with

the standard notions of hypertext “nodes.”

HDM information structures can be interconnected by links. HDM distin-

guishes among three categories of links. Structural links connect together

ACM Transactions on Informatmn Systems, Vol. 11, No. 1, January 1993.

HDM —A Model-Based Approach to Hypertext Application Design . 7

components belonging to the same entity. Perspective links connect together

the different units that correspond to the same component. Application links

denote arbitrary, domain dependent relationships and connect together com-

ponents and entities, of the same or different types, in arbitrary patterns set

up by the author. Application links are grouped in link types. All perspective

links, and most structural links, do not need to be defined explicitly by the

author, since they can be deriued automatically from the structure of entities.

Some application links can be derived by exploiting semantic properties (e.g.,

symmetry and transitive closure) of the corresponding domain relationships.

As any other design model, HDM makes a clear distinction between the

notion of schema and the notion of instance of a schema. A schema is a

collection of type definitions that describe an application at the global level;

an instance of a schema is a collection of entities, components, units, and

links that satisfy the definitions of the schema. Outlines, i.e., access struc-

tures, provide reader-oriented entry points to directly access information

structures in an instance of a schema.

A browsing semantics has the purpose of specifying how information

structures are visualized to the reader, and how he can navigate across them.

HDM provides a relatively simple default browsing semantics as built-in;

different browsing semantics however could be defined, to describe more

sophisticated visualization effects for applications specified with HDM.

2.2.1 Entities and Entity Types. An entity is a (relatively large) structure

of information which represents some real world olbject of the application

domain; a law (say “Law 19/8/89”), a musical Opera (say Verdi’s “La

Traviata”), a piece of equipment (say “electric engine”) could be examples of

entities.

Entities are naturally grouped in entity types, which correspond to classes

of objects of the real world. “Law”, “Musical Opera” and “Equipment” could

be examples of entity types.

The notion of entity (and the related notion of entity type) is commonly

recognized as a suitable notion to model information in the data base field.

The most popular design model, the Entity-Relationship (E-R) model [10],

and the several other related models derived from it, are based upon the

notion of entity and entity class.

We should warn the reader, however, that although we have kept the term

and the basic nature of the concept of Entity, in practice HDM entities are

very different from E-R entities. For example, HDM entities have complex

inner structures (with links inside, see Subsection 2.2 .7), while E-R entities

are essentially flat; HDM entities have a (default) browsing semantics associ-

ated with them (see Subsection 2.4. 1); HDM entities can be interwoven, via

application links (see Subsection 2.2.8), in patterns much more complex than

those allowed by relationships in the E-R model.

2.2.2 Components. An HDM entity is a collection of components arranged

in a tree-like fashion (ordered hierarchy). A component is an abstraction for a

ACM TransactIons on Information Systems. Vol. 11, No. 1, January 1993.

8. F. Garzotto et al

set of units (see Subsection 2.2.4), which are the actual containers of informa-

tion, and derives its content from its units 1. A component, being part of a

hierarchy, in general has a parent (but for the root component), a number of

siblings (which are arranged in a linear order) and a number of children (but

for the leaf components). Components “inherit” their type from their en-

tity and can only exist as part of an entity; in this sense, they are not

autonomous.

Examples of components, for the entities introduced in the previous subsec-

tion, could be “Article 1“ (component of “Law 19/8/89”), “Article l—Subsec-

tion 1.2” (child of “Article 1“ component), “Ouverture” (component of “La

Traviata”), “condenser” (component of “electric engine”).

Many authors have observed that hierarchies are very useful to help user

orientation when navigating in a hypertext [1, 7]. HDM recognizes this via

the notion of entities made up of components organized into hierarchies.

Hierarchies can be induced by many semantic criteria (i.e., domain relations).

The “Is-part-of” relation, for example, is one of the most commonly used.

HDM, however, does not acknowledge the (possibly) different semantic na-

ture of different hierarchies, since it is not intended to be a semantic model.

In HDM, a hierarchy is a purely syntactical device to organize information in

regular building blocks within a (possibly large) application.

2.2.3 Perspectives. In hypertext applications it is often the case that the

same topic must be presented in several alternate ways. There are several

different reasons why this need may arise. In multinational applications, for

example, the same topic must be represented with different languages (e.g.,

Italian, Portuguese, English, etc.). In educational applications, it may be

useful to present the same topic using different rhetorical styles (e. g., discur-

sive, synthetic, schematic, . . .), according to different needs of the readers. In
recent applications, very often different media can be used for presenting the

same piece of information (text, graphics, image, video, sound, etc.).

In HDM this notion of having different presentations for the same content,

is captured by the concept of perspective. If an entity has two possible

perspectives (say “Italian” and “English”, or “Score” and “Sound’), all the

components belonging to it also have two possible perspectives. The set of

perspectives are shared by all entities of a given entity type, and are defined

at entity type level.

Perspectives are just a syntactical device to organize information. HDM

does not acknowledge any predefine semantics behind this concept, and does

not interpret it. Tbe author has to decide when and how to use the notion of

perspective, and what is its intended meaning. HDM only prescribes con-

sistency in using the different ways for presenting information in entities of

the same type.

.—
1 For model slmphclty, and also because we have verified that so far we do not need the feature,

entities cannot be used as components of other entities

ACM TransactIons on Information Systems, Vol. 11, No 1, January 1993

HDM —A Model-Based Approach to Hypertext Application Design . 9

2.2.4 Units. A unit corresponds toacomponent associated with a specific

perspective. A unit is characterized by a name (its identifier) and a body.

Bodies of units are the place where the actual content of an HDM application

is filled in. “Ouverture/sound”, “ Ouverture/score” (of the entity “La Travi-

ata”), “Article I/Official Text”, “Article I\Annotated Text” (of the entity

“Law 19/8/89”), “assembly instruction/Italian-text”, “assembly instruction/

English-text”, “assembly instruction/Italian-graphics”, “assembly instruc-

tion/ English-~aphics” (of the entity “Electric Engine”), are examples of

units.

If the reader tries to relate HDM units to traditional hypertext notions,

units, roughly speaking, may be thought as corresponding to the standard

notions of “nodes”. This correspondence is not completely true; for example,

units can be created only in the proper context (of components and entities,

under the proper perspectives), and arbitrary nodes are not allowed in HDM.

Filling in a body, corresponds to authoring-in-the-small (in our terminol-

ogy), which is purposefully outside the scope of HDM. Therefore HDM units

are the border-line between authoring-in-the-large and authoring-in-the-

small: identifying the units and putting them in the proper context belongs to

authoring-in-the-large; filling the bodies of units with actual content is

authoring-in-the-small.

In HDM, different units are allowed to share their body. This is, method-

ologically speaking, not encouraged in HDM; in fact, sharing of bodies implies

that the same content can be accessed in different (not mutually exclusive)

contexts, and this is a typical source of disorientation for the reader. Addi-

tionally, we have verified that the need for sharing of bodies arises, quite

often, from a poor design of the schema and a bad use of application links (see

Subsection 2.2.8). Still we have introduced the notion of body sharing since

we have acknowledged that, in some applications, a good use of it can

simplify the application specification for the designer (but at the possible

expense of clarity for the reader).

2.2.5 Links in General. Links in hypertext have a twofold role: a repre-

sentational role (i.e., capturing domain relations) and a navigational role (i.e.,

capturing navigation patterns). Sometimes these two different purposes are

consistent with each other, sometimes they can be at odds. It may happen

that domain relations are not suitable for navigation, i.e., they induce naviga-

tion patterns that are not relevant for an aPPliCatbIIl, while, on the contrary,

useful navigational links may have vague semantic meaning. Definition of

links is therefore a trade-off between representational and navigational goals.

However, the more the meaning of a link is made explicit and approximates a

relationship of the application domain that a reader is aware of, the more the

same reader will be at ease in using the hypertext, since links will evoke

familiar associations.

HDM is not intended to be a semantic model. However, HDM acknowledges
three categories of links: perspective links, structural links, and application

links. The distinction among the three classes simplifies the job of the

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

10 . F. Garzotto et al.

application designer, induces a consistent use of most links, creates more

predictable navigation patterns, and finally makes it possible to introduce

additional features such as derivation of links (see Subsection 2.3) and

definition of a default browsing semantics (see Subsection 2.4.1).

2.2.6 Perspective Links. Perspective links interconnect units correspond-

ing to the same component. Perspective links will connect, for instance, the

units “assembly instruction/Italian-text” and “assembly instruction/Italian-

graphics”, thus allowing an Italian reader to switch from the text description

of an assembly operation to the picture (in Italian) that schematizes it.

Perspective links are navigationally very simple for the reader, since

activating a perspective link leaves the current topic (i.e., the reader’s focus of

attention) unchanged.

2.2.7 Structural Links. Structural links connect components belonging to

the same entity. There are several different structural links, each of them

corresponding to a relationship induced by the ordered tree structure of

entities. Examples of structural links are “Up”, connecting a component to its

parent, “Down”, connecting a component to its children, “Down-l”, connect-

ing a component to its first child, “Next-sibling”, connecting a component to

the following child of the same father, “Root”, connecting a component to the

root of the tree, and so on.

Structural links can be used by the reader to navigate among chunks of

information belonging to the same entity. Navigationally, they are a little

more complex than perspective links, but they are still quite simple, since

they leave the reader inside the same information context, i.e., the same

entity, with limited danger of getting lost. In the worst case the “Root” link

can always take the reader to a safe point (i.e., the root of the entity).

2.2.8 Application Links and Link Types. Application links represent the

most expressive portion of any non trivial hypertext; they represent domain

dependent relationships among entities, or their components. These relation-

ships are chosen by the author as both navigationally and semantically

relevant.

Application links are organized into types. An application link type, or link

type for short, is specified in HDM by a name, a set of source and target

entity types, and a symmetry attribute, which can assume two values—sym-

metric or asymmetric. Source and target entity types define what can be

linked to what. Once a link type has been defined as having source entity
type A and target entity type B, instances of this link type are allowed to

connect entities or components of type A to entities or components of type B

only. The symmetry attribute defines a semantic property of the link

type—whether or not each link of that type has an inverse link. This

property can be exploited for automatic derivation of application links (see

Subsection 2.3).
An example of application link type is “is-author-of”, whose instances

connect entities or components of type “Composer” to entities or components

of type “Musical Opera”. Another example is “is-justified-by”, whose in-

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

HDM —A Model-Based Approach to Hypertext Application Design . 11

stances connect entities or components of type of “Contract”, to entities or

components of type “Law”.

The semantic depth or arbitrariness of an application link type can vary,

and is left to the author’s responsibility. If establishing the composer of an

opera corresponds to expressing a purely matter-of-fact truth, deciding that a

given law is particularly relevant for a (portion of) contract, may express an

arbitrary and debatable judgement.

In HDM, the choice of application link types and the placement of their

instances is completely left to the author. By requiring the specification of

source and target entity types in the link type definition, HDM only enforces

syntactic consistency, and therefore it would not allow, for example, to

establish an “is-author-of’ link from a “Musical Opera” to a “Law”.

From a navigational point of view, application links are typically the most

troublesome, since when traversing application links the reader perceives

that his information context is abruptly changed. Assume that the reader is

examining a contract. While he is navigating among its different parts

(following structural or perspective links), he is always within the same
familiar information context. If now he follows an application link of type

“is-justified-by”, he will find himself looking at an article of a law and not at

the clause of a contract. After having followed a number of application links,

the reader might get disoriented by the different information contexts (i.e.,

entities of different types) he has traversed.

2.2.9 Entity Types Revisited. We can now reexamine the notion of entity

type and characterize it in a more precise fashion. All the entities belonging

to the same type have certain features in common: (1) the name of the their

entity type; (2) the set of perspectives under which their content (i.e., the

body of their units) is presented; (3) the types of their outgoing and incoming

application links.

2.2.10 HDM Schema. An HDM specification of a hypertext application

consists of a schema definition and a set of instances definitions. A schema

definition specifies a set of entity types and link types. Instances are allowed

to be inserted in the application only if they obey the constraints specified by

the schema.

The notion of schema is relatively new in the hypertext field, but it is

obviously derived from the current practice in the dlatabase field. Database

schemas started (in the early sixties) as simple templates, describing file

structures, that allowed generic operations such as “find” or “search” to be

performed, independently from structural and implementation details of files.

With time these file descriptors have become more complex, incorporating

more semantic features.

In the hypertext field the evolution seems to start following the same

course; developers of applications, who need to perform several times the

same operations on complex node/link structures, lhave acknowledged that
“templates’’-descriptors of network patterns—are useful to save effort and

to ensure consistency [27, 38]. Most existing template mechanisms in hyper-

text, however, are defined essentially on a syntactic basis. Taking advantage

ACM Transactions on Information Systems, Vol. 11, No. 1, January 1993.

12 . F, Garzotto et al.

of the historical experience of the Data Base field, HDM attempts to go

directly to an advanced notion of Schema that is able to represent some

semantic features of hypertext applications, as well as to exploit syntactical

regularities.

2.2.11 Outlines. According to the HDM terminology, a hypertext applica-

tion can be, roughly speaking, divided in two portions: a hyperbase and a set

of access structures.

The hyperbase represents the core of the application; it consists of all the

elements defined in the previous sections: entities, components, units, and

links of all the categories previously discussed—structural, perspective, and

application links. The reader can explore the hyperbase by traversing the

links defined there.

Before he can start this navigation, however, the reader must have entry

points to get a view of what the hyperbase is about, and to locate the most

convenient starting point. Access structures have the purpose of allowing the

reader to properly select the entry points for further navigation.

In HDM, so far, we have mainly focused our attention on modeling the

hyperbase, which represents the most relevant portion of any hypertext. For

access structures, at the moment, we provide a unique primitive, the outline,

explained below. In the Conclusions (Subsection 4.4) current work for the

enhancement of this part of HDM is described.

Outlines are structurally quite similar to hyperbase entities, but they have

a number of restrictions and peculiarities that make them substantially

different from entities. An outline is an ordered tree of components. Each

component (but for leaf components) is connected to its child components, to

its siblings, and to its parent (but for the root component), via structural

links. Differently from entities, however, these are the only outgoing or

incoming links for nonleaf components; additionally, leaf components m z{st

have a number of outgoing (untyped) links to entities or components of the

hyperbase. Outlines are not typed and are not specified in the schema—they

can be freely added or modified, at will, in an application, in order to provide

the appropriate entry points for the reader.

An outline for applications in the legal field, for example, provides an

access to “European Laws”, or “National Laws” in the root component.

Selecting “National Laws” corresponds to traversing a link to a component

where a further choice is presented among different categories of national

laws—say, for example, “Laws concerning real estate sale”, “Laws concerning
donation”, etc. There is an outgoing link for each of the above categories of

laws; each one of these links points to a leaf component, which has a number

of links to specific entities of type “Law” of the selected subcategory (say, for

example, “Law 10/21/87”, “Law 3/5/75”).

2.3 Derived Links and Derived Link Types

One of the central advantages of HDM in the design and practical construc-

tion of hypertext applications is that defining a significant number of links

ACM Transactions on Information Systems, Vol 11, No. 1, January 1993,

HDM —A Model-Based Approach to Hypertext Application Design . 13

can be left implicit—being induced from structural properties of the

model—or can be defined intentionally and algorithmically derived. At the

conceptual level, the author needs to provide a much smaller number of links

than the number of links that will actually be present in the application; once

the proper interpreter is provided, all implicit or derivable links can be

generated automatically from the design level description, by using the

schema definitions.

All perspective links can be left implicit and can be automatically derived

from the definition of components and units. For example, if perspectives

“score” and “sound” are defined for entity type “Opelra”, two perspective links

will be generated for each component of an entity of this type: the first

connecting the unit of the component under “score” perspective to the unit

under “sound perspective of the same component; the second being the

inverse of the first.

Defining an entity is equivalent to defining a set of components plus the

minimal set of “basic” structural links that are necessary to induce an

ordered hierarchy relationship on the set of components: links from any

(nonleafl component to its first child, and links from any component to the
next child of the same parent. A large number of other structural links can be

defined intensionally, and can be computed, from the basic ones. For exam-

ple: “down(N)” (N positive integer) —connecting a component directly to its

Nth child; “down’’-connecting a parent component to all its children;

“up” —connecting a component to its parent; “to-top’’-connecting a compo-

nent to the root of the entity.

Derived structural link types can be defined in terms of operators such as

“inversion “, “composition “, “composition N)“ (repeated composition, N times),

“transitive closure”, and “closure’’-applied to basic structural links. All

instances of derived structural link types can be automatically computed

from the basic structural links, by a proper interpreter “executing” the

corresponding derivation clauses.

A similar approach can be applied to application links. For example, from

application link types that have been defined as “symmetric” (see Section

2.2.8), the corresponding inverse link types can be specified by using the

inversion operator, and their instances can be automatically generated. As a

more sophisticated case, we can specify derivation rules such as: “given an

application link type, if an instance of it exists between two components of

different entities, then an instance of the same link. type is derived between

the roots of the corresponding entities.”

Assume for example that a component of an entity of type “legal document”

—say “section 1. 1“ of a contract “X, has been connected by the author to a

component of an entity of type “law’’-say “Article 2“ of law “Y-by a link of

type “justified-by” (see Figure 1). Then assume that the author wants to

represent also the fact that, at a different level of detail, the whole contract X

“is-justified” by the whole law Y. This fact can be expressed by a link between
the root of contract “X” (which is intended to represent the whole entity “X)

and the root of law “Y” (which is intended to represent the whole entity “Y).

This link can be derived by composing the inverse of link “to-top’’-outgoing

ACM TransactIons on Information Systems, Vol. 11, No. 1. January 1993.

14 . F. Garzotto et al.

der]ved

appllca[fon

app!lcat)on link

Fig. 1, Example of derwed application hnk.

from component “section 1. 1“-with the link “is-justified-by’’—outgoing from

the same component—and then composing the result with the link “to-top”

outgoing from component “Article 2“.

2.4 Browsing Semantics

The actual use of a hypertext is largely defined by its browsing semantics

[39], which will determine what the information objects are for “human

consumption” (in HDM terms, entity types, link types, entities, outlines,

components, or units), what the perceived links between these objects are,

and what the behavior when links are activated is.

Given the specification of a particular browsing semantics compatible with

a given target hypertext systems, it becomes possible to translate HDM

application specifications into running applications, once the mapping from

HDM primitives into implementation structures of the target environment

has been provided. By applying different browsing semantics to the same

HDM static specifications, it is possible to deliver the same HDM application

under different versions, each one characterized by different visual features
and dynamic behaviors, or running in different hypertext systems.

The particular browsing semantics will be closely dependent on the particu-

lar hypertext development system being used for implementation. HDM, as

discussed so far, does not prescribe a priori any specific browsing semantics

for hypertexts specified with it, nor does it include any high level primitive

for defining browsing semantics. However, we have defined a minimal brows-

ing semantics, compatible with plain nodes-and-links structures found in

most hypertext systems, and we have adopted it for our experiments on

automatic translation of HDM specifications into running applications (see

ACM Transactions on Information Systems, Vol. 11, No 1, January 1993

HDM — A Model-Based Approach to Hypertext Apphcatlon Design . 15

Section 4.3). For the moment, this browsing semantics is considered as the

default browsing semantics for HDiM.2

2.4.1 Default Browsing Semantics. HDM default browsing semantics as-

sumes that only units can be perceived by the readers as standard “nodes”,

i.e., “loci of navigation control”, and that only one node is active at any time.

As a consequence, readers can perceive links only among units, and so, in the

end, actual, navigable connections must be established among units.

Since in HDM only perspective links connect units, while structural and

application links are established among components or/and entities, the

latter must be properly translated into unit-to-unit links. We will call “ab-

stract” the links among components and/or entities, and “concrete” the

unit-to-unit links.

2.4.1.1 From Abstract to Concrete Links. HDM default rules for translat-

ing abstract links into concrete links are based cm the idea of having a

default representative for each abstract object (component or entity). Defining

default representatives of entities and components is done by introducing a

default perspective for each entity type, and then assuming that the default

representative for a component is its unit under the default perspective and

the default representative for an entity is the default representative of its

root component. This corresponds to saying that the root component of an

entity, in its default perspective, “stands” for that entity.

Given this notion, entity-to-entity application links translate into concrete

links between their default representatives. Each component-to-component

application link is translated into a set of concrete links connecting each unit

of the source component to the default representative of the target compo-

nent.

To illustrate this rule, consider the following situation occurring in a

hypermedia music listening guide; “La Traviata-Ouverture” component (of

entity “La Traviata” of type “Musical Work), is linked to “Verdi- 1“ compo-

nent (root of entity “Verdi” of type “Author”), through a “Composer of”

application link. Consider furthermore that “Author” entity type has perspec-

tives “Picture” (showing the person) and “Text” (with a textual description),

while “Musical Work” has “Text” (with the music sccme) and “Music” perspec-

tives. “Picture” is the default perspective for entity type “Author”.

In the above case, the actual concrete links corresponding to the abstract

link connecting the two components, will connect both “La Traviata-Ouver-

ture: Text” unit and “La Traviata-Ouverture: Music” unit to “Verdi-l:

Picture” unit. This is an example where one link at the abstract level

corresponds to two concrete navigable links. The situation is illustrated in

Figure 2.

2 The default browsing semantics has been implemented in a prototype system, which uses a

relational database description of HDM specifications, and generates a tabular description that

can be imported into Hypercard and manipulated using Hypertalk. This prototype is described in

detail in [36].

ACM Transactmns on Information Systems, Vol. 11, No 1, January 1993.

16 . F. Garzotto et al,

Commxer of A&trect Application Link

Component
“La Traviata -
Ouverture ‘f

Concret& Links

Component
“Verdi -l”

Fig. 2. Example oftranslation from abstract toconcretellnks

The default rule for component-to-component structural links translation

is the following: if a component C 1 has a structural link to a component C2,

then, for each perspective P, each unit of C 1 having this perspective is linked

to the unit of C2 having the same perspective. Therefore, in an entity of type

T having N perspectives, N concrete links correspond to each structural link

defined at the conceptual level.

2.4.1.2 Perception of Links: Anchors and Anchor Types. In hypertext,

connections among pieces of information are usually perceived through

“anchors” (or “buttons”). Anchors are link place-holders that show the exis-

tence of connection in nodes, and can be selected (“clicked”) by the reader in

order to get into the link target(s). An anchor type specifies the properties of

anchors that represent links of the same type, or of a group of link types.

Consider for example, that a “Procedure” entity type has an outgoing link

type “Formal-Legal-Justif ication” to a “Law” and an outgoing link type

“Informal-Justification” to an “Informal-Regulation”. The author might want

to provide to certain classes of users a single reading link, simply labelled

“Justification”, since the distinction between formal and informal justifica-

tions might not be important for readers of that class. This can be achieved

by specifying the anchor type “Justification” to be the union of application

Zink t,ypes “Formal-Legal-Justification” and “Informal-Justification”.
Another design requirement of the author might be to hide links of a given

type for a specific application (since they might be relevant at design and

specification level but not at reader level). This can be achieved by simply not

assigning any anchor type to that link type. Anchor types, therefore, provide

a mechanism for the author to present groups of link types together, also
renaming or hiding them, as desired.

When an anchor actually refers to several possible destination nodes, the

HDM default browsing semantics has the notion of CAooser, i.e., a structure

ACM Transactions on Information Systems, Vol 11, No. 1, January 1993

HDM —A Model-Based Approach to Hypertext Application Design . 17

that is associated with an anchor and allows, via a “menus”, to select one of

the multiple targets of the anchor.3

3. EXAMPLE OF HYPERTEXT MODELING WITH HDM

This section will describe a hypertext application designed with HDM—a

subset of a larger prototype application for banking environment named

Expert Dictionary [15] which has been developed by ARG SpA and Politecnico

di Milano within the European Esprit project SUPERDOC.

The goal of the Expert Dictionary is to provide an organized way to access

to a large set of information of vastly different but interrelated nature

handled by credit organizations. A credit organization manipulates Docu-

ments according to Procedures. Documents and Procedures are defined ac-

cording to Laws, Regulations, and Informal Norms. Laws are issued by the

state to discipline and control credit granting and taking activity. Most of the

times laws are too broad, and must be made more specific by Regulations

issued by some authority, on the basis of the text of the law. Finally, these

regulations are interpreted within an organization with the addition of

Informal Norms, which are of course valid only for that organization.

Entity types and application link types that model the above state of affairs

are sketched in Figure 3. Each of these entity types has a set of perspectives

associated with it, which are omitted for lack of space. For example: Laws

and Regulations have Structure* and Official Text perspectives; Documents

have Structure*, Official Text, and Description perspectives; Procedures

have Flow Diagram Structure” (“Structure” for short) and Description per-

spectives. The perspective marked with a “*” is the default. All application

link types are “symmetric” (see Section 2.2.8), i.e., they represent a relation

and its inverse. Thus we have drawn link types only once, but we assume

that for each application link type, there is a derivable link type that

corresponds to its inverse.

A fragment of an instance of the schema above is depicted in Figure 4. It

shows an entity of type Procedure named Mortgage Loan Procedure, which is

made up of a root component introducing the whole entity and several other

components denoting subprocedures or subprocedure steps. Another entity is

Circular HyperBank 21 / 10/89 of type Regulation, which is made up of a

root and four components: Units Involved, Subject, Operational Norms in

Request Verification, and Data Entry Rules. These last two components

represent information that respectively affect the way the procedure (sub)

steps Request Verification and Request Data Entry are performed; therefore,

application links of type has-effects-on are included. Entity Circular Hyper-

Bank 21 /10/ 89, in turn, is motivated-by entities Law 19/8/89 and

3 Choosers can be generated automatically from the specification of the concrete links in the

hypertext application.

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

18 . F. Garzotto et al.

/—————_—————..
motwded byl
motwwon for

produced byldocuments necessa~ fol

Rg 3. Schema of entity types and apphcat~on link types of the Expert Dictionary

Administrative Council Deliberation 20 / 9 / 89. The small black rectangle on

the right-hand side of the picture is an outline named Access to Mortgage

Loan Client Information, which allows us to directly access entities describ-

ing documents needed for the compilation of a Mortgage Loan Request (in the

picture, Mortgage Loan Request Form and Notary Statement).

The following figures show a few examples of screens (corresponding to

HDM units of the appropriate components) from the Hypercard implementa-

tion of the Expert Dictionary, which was generated adopting the default

browsing semantics described in Section 2.4.1. The same application, with the

same browsing semantics, has been implemented also in Hyperpad.

Figure 5 shows the “Structure” perspective of a component of entity “Cir-

cular HyperBank 21/10/89” of type Regulation. Notice that all the links of

type “Justified by” have been grouped under the anchor (button) “Motiva-
tions”. Figure 6 shows the same component under the perspective “Official

Text”.

Anchors corresponding to application links (“Effects”, “Motivations”) and

perspective links (“Description” and “Official Text” in Figure 5, and “Struc-

ture” and “Description” in Figure 6) are at the bottom of the screen. If the

user is interested in seeing, for example, the effects of the regulation shown

in Figures 5 and 6, he can click on the anchor “Effects”. Since this in reality

groups several outgoing links, a chooser is activated; from it, the user can

select which of the possible destinations he wishes to go to.

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993

HDM —A Model-Based Approach to Hypertext Apphcation Design . 19

Regulation Motivated Admlnistr
Informal

BY

~(?

Norm
ouncil Delib.

Q

orfgage Procedure

Circular

J

28/9/89 Loan

HYPERBANK ~ rocedure

21/1 0/89

w

=

Units

& (-

Request
Involved Acceptance

and Entry

. .

=

Subject

,;, ,
/. , ,“.- ...

l\ f Operational‘

\7--

\— /1uLaw
19/8/89

-*

Documents
Necessary For

)

Documents

DOc”mg;

Necessary For

Notary
Statement

‘--=&

Access to Motiage Loan
Client Information

Fig. 4. Instance of Expert Dictionary schema in Figure 3.

4. CONCLUSIONS

4.1 Comparison with Other Works

HDM shares some apparent similarities with the Entity Relationship (E-R)

model [10]. However, there is no E-R notion equivalent to HDM perspectives.

Additionally, HDM Entities are much more structured than E-R entities,

which are essentially flat and do not have structural links. Most importantly,

whereas in the E-R model relations are included for representational reasons,
HDM links are included also with the goal of providing navigation paths.

HDM differs from g-IBIS [11] in the fact that it does not freeze, a priori, the

application domain, and therefore its representation primitives are more

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

20 . F Garzotto et al.

mu
-=.

LAST

h

-

::

OaXnpum Otfmal Text Motwatmm Effects
[

LOCAL UNITS INVOLVEO

In

w

SU&fELT UPDATING THE ALLOWED MORTGAGE LOAN AMOUNT

W R.T THE VALUE OF THE PIORTGAGE GUARANW

[i

‘;

OPERATIONAL NORMS IN LOAN REQUEST VERIFICATION
‘6

RULES FOR LOAN REQUE5r DATA ENTRV

Fig. 5. “Structure” perspective of a Regulation.

I-ut. 10C&LLINITr1~MkGcP3,cLl~NT5[PYlC[SD6PhRTtlfNTM6NAGER5.

— s“b],ct uPD~TINL7HEALLOWEDMORTGALE LOANAFIOUNT W RT THE VdLUEOf THE

Hl~_
,. ..;,, ,;. Jg

CIRCULAR HYPERLMNKN !723-Ott 21st 1989

k
~

M“”’’’’’’’”’’’”

D

~

P

We , “form that the ex,, t,”g ,“1,,, to be be ,do Pted by the),,,1 “,, t,, rqard)”q
z I1OPTGAGELOAN REQUESTVERIFICATION and MORTGAGi LObN CONCESSION, have

been e.tended m follow,;ZT

H

:

& x

7
+lr{he Purw$eof theoan IS the Purch,$e.rthe re$tructur,n9.f~h,b.rro*t.g pariy$

lega)lgdec18 red rcsldence, then the hlghe$t loan, mount thatcen be Pro)lded ,$ the

1

qm?f]

75X orthe value Ofthe guaranty, 1hewar8ntq must bc, m USWI the costumer s
I,wIIY declared resldt”ce
Th13 rule holds ror ANf customer mtqory

II Dr M 81a”ch)
Cl, ent Serwce$ EMpt D, rector

Stmcfme I ~ptiml Mot!uat!ons Eff&ts
I

Fig. 6. “Official text” perspective of the Regulation in Figure 5.

“general”, oriented towards allowing the design of hypertext applications in

most domains. HDM philosophy shares with IDE [27] the aim of supporting

representation tasks in hypertext and of encouraging the creation of regular

and consistent network structures. IDE has surely anticipated a number of
concepts exploited in HDM. However, IDE is basically a development tool,

while HDM is also a conceptual design device which can be useful even

without an implementation of its primitives. Moreover, HDM provides richer

modeling primitives—the notion of perspective, the distinction between dif-

ferent categories of links, the separation between hyperbase and access

structures, and between authoring structures and reading structures (i. e.,

browsing semantics). Object Lens [28] classes resemble somewhat HDM

entity types. Object Lens, however, does not impose any constraint on possi-

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993

HDM — A Model-Based Approach to Hypertext Application Design . 21

ble connections between object class instances and no real discipline on actual

instances creation.

With respect to other hypertext models discussed in Section 1.2, HDM

differs in the fact that it is aimed at modeling applications rather than

systems. HDM shares with the Trellis model [39] and Tompa’s model [41] the

idea of abstracting from the contents and structure of the “nodes”, which are

allowed to contain arbitrarily complex information structures. Differently

from HDM, however, these models are more concerned with behavioral

aspects of hypertext, or with operational features, rather than on representa-

tional issues.

The approach introduced in [40] shares with HDM the idea of disting-uish-

ing between authoring language, for defining hypertext structures in a

system independent manner, and browsing semantics language. As far as

browsing semantics is concerned, the work presented in [40] goes a step

ahead with respect to HDM, by providing a graph-grammar based language

for specifying patterns of visual and dynamic behaviors (style templates), and

general techniques for translating generic authoring notations into systemat-

ically structured hypertext. In this sense, this work is somehow complemen-

tary to HDM, whose major focus for the moment is on static representational

aspects.

4.2 Evaluation, Experiences, and Feedback

The HDM model can be used in different manners: a.s a modeling device or as

an implementation device. As a modeling device, it allows to lay down clear

and concise specifications of applications to be developed, or to describe

applications already developed, in a system independent manner. Using

HDM as an implementation device, means to directly support the develop-

ment effort by HDM related tools, as described in Section 4.3.

A number of experiences have shown that significant gains in the quality

and speed of the whole process of application development can be achieved by

using HDM as modeling device. In particular, we have observed that HDM is

especially suitable for applications where regularity, organization, modular-

ization, and consistency are important factors. Typical examples of such

applications are, for example, technical documentation, training and educa-

tion [12, 27], audi’ting systems [13], and in general, large applications for

corporate environments. It is therefore true that “creative” applications [5],

where the author tends to follow his feelings in a somehow unpredictable way

(e.g., inventing new nodes and new navigation patterns on the fly) rather
than planning his exercise in advance, are not conveniently modeled by

HDM. Our conjecture (not yet fully tested) is that most of the intensively

used, existing or future, hypertext applications are unlikely to be of
the “creative” kind, but rather they are planned, cohesive, and carefully

organized.

As a modeling device, HDM has been successfully used several times.
Beside the authors, several different research groups in four different coun-

tries are using HDM in a significant number of different application fields,

which range from administration and technical manuals, to university class

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

22 . F. Garzotto et al.

notes, literature, philosophy encyclopedias, art collections, and exhibitions

[9, 23, 24, 25, 34]. All of them have reported that the model can be relatively

easily grasped both by the users and by designers, and that a more produc-

tive cooperation can be achieved among the persons involved in the process of

application development—analysts and domain experts, analysts and imple-

mentors, different implementors. Domain experts are able to discuss the

design of the application in HDM terms, and to autonomously modify and

improve it. This implies a tremendous gain in the efficiency and quality of

knowledge and requirement analysis processes. Members of the implementa-

tion team are able to discuss the application with the analysts and to get a

deep and precise understanding of the requirements of their work without

the need of prototyping it. This makes it possible to split the implementation

tasks among different persons, still obtaining consistent applications. Since

implementors are guided by clear and precise specifications, arbitrariness is

virtually eliminated.

An interesting side effect of using HDM in team work has been the fact

that people who use HDM as a modeling device, tend to invest a quite

extensive time in discussing “organization style” issues (e.g., the best way of

organizing a set of information, the choice between establishing perspective

links versus application links, etc.). These discussions are extremely effective:

the overall quality of applications improves, in general, and, more interest-

ing, groups tend to develop a common, consistent design style across different

application domains.

Additionally, HDM and related tools have been shown to be quite useful in

making the development of the same application in different versions easier,

by “switching” from one environment to another. Target systems, so far, have

been Hypercard, Supercard, Hyperpad, Toolbook, Director (the latter for

animations embedded in Hypercard-based hypertext).

4.3 Tools and Implementation

We have developed so far a number of elementary HDM-tools to speed up the

development of our applications. For the time being, these tools perform the

following operations:

—automatic suggestion of application links (out of link type descriptions in

the schema);

—automatic derivation of some application links (the inverses of author-

defined application links, and the root-to-root derived links based on the
rule exemplified in Figure l—Subsection 4.3):

—automatic derivation of structural and perspective links;

—maintenance of link tables (which describe the extensions corresponding to

link types);

—automatic derivation of a class of outlines—those allowing to enter the

hyperbase by first selecting the entity types of interest, and then choosing

the desired entity within the list of all entities of the selected type;

—automatic creation of entity templates (out of entity type descriptions in

the schema);

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

HDM —A Model-Based Approach to Hypertext Application Design . 23

—automatic creation of visual templates for nodes, including placement of

anchors and association of anchors to link instances.

For implementation purposes, HDM has not been yet tested on a suffi-

ciently large scale; the initial results, however, are quite encouraging. Even

in their rudimentary stage of development, the above tools have greatly

increased the effectiveness of our development, by a ratio of four to one, and

we have achieved enormous savings in the development effort. For example,

in an educational application based on six entity types and eighteen link

types, six hundred units (“nodes”), and four thousand link instances, all the

visual templates for nodes of the different types have been automatically

generated, and 80% of the link instances have been derived. It is easy to

understand why this happens; just think of the effectiveness of automatic

generation of visual templates, including anchors and their associations to

links, and, above all, automatic generation of derived links.

4.4 Further Developments

All the above tools, although effective in their own respect, do not constitute a

well defined consistent development environment. The research project

HYTEA [1], within the CEC ESPRIT program, is currently aiming at the

development of a full size HDM-based development environment for hyper-

text applications. The project involves four different companies and two

research institutions, and is scheduled to be completed by March 1993.

Within the HYTEA project, the modeling primitives of HDM have been

“transferred” into the concrete syntax of a language, named HDL—HDM

definition language [22], which has been omitted here for lack of space. HDL

is more a reference language than a language which will be directly used by

application designers. In the final HYTEA environment, authoring in HDM

will be based on visual programming, rather than on traditional program-

ming. Some work on defining visual objects corresponding to HDM design

primitives is already in progress. A reference language is still useful, how-

ever, in order to define precisely the semantics of the interactive operations

offered by the HDM authoring environment.

HDM is, obviously, an evolving model: as we gain applicative experience,

we will modify the model according to the new emerging needs. In particular,

access structures currently provided by HDM are restricted to the relatively

unsophisticated notion of outline, which has been proved to be too limited.

Looking at complex corporate environments, we found out that a typical

situation is to have several different categories of readers using the same

hyperbase. Each category of users naturally perceives the organization of the

material according to its needs. From this observation, we came to the

conclusion that access structures should evolve from just providing entry

points to the hyperbase to becoming something like “hypertext views”, i.e.,

ways of presenting “fictitious” hypertext environments, specifically tailored
for a class of readers. “Fictitious” means that these environments are not

implemented on their own, but are rather “simulated” by a suitable mapping

on the underlying hyperbase. For this purpose, the notions we are working on

ACM Transactions on Information Systems, Vol. 11, No. 1, January 1993.

24 . F. Garzotto et al.

are “derived entities” (i.e., entities assembled out of pieces of other, preexist-

ing, entities), “user-derived” links (i.e., links derived only within a given

reading environment), “parametric guided tours” (i.e., intensionally defined

guided tours), and others of a similar kind. Another important aspect we are

currently working on is multimediality. In the current version of HDM,

images, animation, or video clips can be introduced as part of the authoring-

in-the-small process. We have a prototype application, for example, where

entities of type “history” are made of “history notes” (as their components),

and each history note has two perspectives—text and animation. The reader

can choose, according to his interest, either to read the textual description of

an historical event or to watch the animated version of the same event. This

approach works fine for simple applications, where multimedia has the

limited role of presenting small chunks of information with a different

perspective. In other applications, however, multimedia may have a larger

role. A video showing a maintenance procedure, for example, touches differ-

ent subjects; it would be artificial (and ineffective) to model it as a unit

associated to a single component. We are currently working around the idea

that “active” information objects such as animation or videoclips could play

the role of “automated” guided tours [32, 42, 44], i.e., devices which automati-

cally take the reader along different active information units of an underlying

hyperbase, and are “synchronized” with interlinked chunks of static informa-

tion. We are currently developing a large-scale application [34] around this

idea. On the basis of the forthcoming results we will introduce the proper

extensions to HDM.

ACKNOWLEDGMENTS

The ideas that originated the HDM work were first developed in the context

of an ESPRIT project, SUPERDOC, led by ~G—Applied Research Group

SpA. We must acknowledge the technical contribution of the ARG team in

general, and Cristina Borelli, SUPERDOC Project Leader, in particular.

Many of the ideas described here benefited from discussions with Mark

Bernstein, Norman Meyrowitz, John Mylopolous, and the members of the

HYTEA Project Team, Andrea Caloini and Luca Mainetti in particular. We

are grateful to the TOIS Associate Editor, Polle Zellweger, and to the TOIS

anonymous reviewers for their extraordinarily helpful comments on previous

versions of this paper.

REFERENCES

1. ARG-APPLIEI) RESEARCH GROUP S~A. HYTEA Techmcal Annex. Tech. Rep., ESPRIT project

5252 (HYTEA), 1990.

2 AKSCYN, R., MCCRACKEN, D., AND YODER, E. KMS: A dmtributed hypertext system for

managing knowledge in orgamzations. Corrzmurz, ACM 31, 7 (1988), 820–835.

3. ATKINSON, W. HyperCard. In Software for Macintosh Computers Apple Computer Co,

Cupertino, 1987.

4, BERNST~lN, M., AND SWF,EN~Y, E, The Electum of 1912, Hypertext for IVfac[ntosh Computers.

Eastgate Systems Inc, Watertown Mass., 1989.

5. BOLTER, J. D., AND JOYCE, M Hypertext and creative writing, In Proceedings ACiVf Hyper-

text ’87 (Chapel Hill, N. C., Nov. 13-15, 1987), pp 41–50,

ACM Transactions on Information Systems, Vol. 11, No 1, January 1993

HDM — A Model-Based Approach to Hypertext Application Design . 25

6. BRODIE, M., MYLOPOLOUS, J., AND SCHMIDT, J., EDS. On Conceptual Modelling: Perspectives

from Artificial Intelligence, Databases and Programming Languages. Springer Verlag, 1984.

7. BROWN, P. J. Turmng ideas into products: The Guide system. In Proceedings of the ACM

Hypertext ’87 (Chapel Hill, N. C., 1987), pp. 33-40.

8. BROWN, P. J. Assessing the quality of hypertext documents. In Hypertext.: Concepts,

Systems and Applications (Proceedings of ECHT ‘90), A. Rizk, N. Streitz, and J. Andrc$, Eds.,

Cambridge University Press, Cambridge, 1990, pp. 1-12.

9. CALOINI, A., GARZOTTO F., AND PAOLINI, P. Hypermedia course notes: The experience of

Politecnico di Milano. In Proceedings of the Italian Conference on Hypertext in Education and

Research (Torino, 1991), pp. 35-42.

10. CHEN, P. The entity-relationship approach: Toward a unified view of data. ACM Trans.

Database Syst. 1, 1 (1976), 9-36.

11. CONKUN, J.j AND BEGEMAN, M. L. gIBIS: A hypertext tool for exploratory policy discussion,

ACM Trans. Znf. Syst. 6, 4 (1988), 303-331.

12. CRANE, G. From the old to the new: Integrating hypertext into traditional scholarship. In

Proceedings of the ACM Hypertext ’87 (Chapel Hill, N. C., Nov. 13-15, 1987), pp. 51-59.

13. DE YOUNG, L. Hypertext challenges in the auditing domain. In Proceedings of ACM

Hypertext ’89 (Pittsburgh, Pa.j Nov. 5-8, 1989), pp. 169-180.

14. GARG, P. K. Abstraction mechanisms in hypertext. Commun. ACM 31, 7 (1988), 862-870.

15. GARZOTTO F., AND PAOLINI P. Expert dictionaries: Knowledge based tools for explanation

and maintenance of complex application environments. In Proceedings of the 2nd ACM

Conference on Industrial and Engineering Applications of Al and Expert Systems (Tul-

lahoma, Term., June 6-9, 1989), pp. 157-169.

16. GARZOTTO, F., PAOLINI, P., AND SCHWABE, D. Authoring-in-the-large: Software engineering

techniques for hypertext application design. In Proceedings of the 6th IEEE International

Workshop on Software Specification and Design (Como, Oct. 2!5-26, 1991), pp. 87-98.

17. GARZOmO, F., PAOLINI P., SCHWABE, D., AND BERSTEIN, M. Tools for designer. In

Hypertext/Hypermedia Handbook, E. Berk, and J. Devlin, Eds., McGraw Hill, 1991, 179-207.

18. GARZOTTO, F., PAOLINI, P., AND SCHWABE, D. HDM—A model for the design of hypertext

applications. In Proceedings ACM Hypertext ’91 (San Antonio, Tex., Dec. 15– 18, 1991), pp.

313-328.

19. HALASZ, F. Reflections on NoteCards: Seven issues for the next generation of hypertext

systems. Commun, ACM 31, 7 (1988), 836–851.

20. HALASZ, F., AND SCHWARTZ, M. The Dexter reference model. In Proceedings of the 1st

Hypertext NIST Standardczatzon Workshop (Gaithersburg, Md., Jan. 16-18, 1990), pp.

95-133.

21. HULL, P., AND KING, R. Semantic database modelling Survey, applications, and research

issues. ACM Comput. Suru, 19, 3 (1987), 201–260.

22. HYTEA PROJECT. HDL—HDM definition language. Tech. Rep. D2, ESPRIT Project 5252

(HYTEA), 1991.

23. HYTEA PROJECT. Hypermedia technical documentation for the forms processing system

Siemens-SIFORM. Tech. Rep. D4. 1, ESPRIT Project 5252 (HYTEA), 1992.

24. HYTEA PROJECT. Hypermedia technical documentation for IVECO-FIAT workshops.

Tech. Rep. D4.2-ESPRIT Project 5252 @IYTEA), 1992.

25. HYTEA PROJECT. Hypermedia for cultural applications: Greek Modern Painting between

the two world wars. Tech. Rep. D5, ESPRIT Project 5252 (HYTEA), 1992.

26. HYTEA PROJECT. Authoring/delivery HYTEA tools: Specification and design. Tech. Rep.

2, ESPRIT Project P5252 (HYTEA), 1992.

27. JORDAN, D., AND RUSSEL, D. Facilitating the development of representations in hypertext

with IDE. In Proceedings ACM Hypertext ’89 (Pittsburgh, Pa.., Nov. 5–8, 1989), pp. 93– 104.

28. LAI K. Y., MALONE, T. W., AND Yu K. C. Object lens: A spreadsheet for cooperative work.

ACM Trans. Inf. Syst. 6, 4 (1988), 332-353.

29. MARSHALL, C. C., AND IRISH, P. M. Guided tours and on-line presentations: How authors

make existing hypertext intelligible for readers. In Proceedings ACM Hypertext ’89 (Pitts-

burgh, Pa., Nov. 5-8, 1989), pp. 15-26.

ACM Transactions on Information Systelms, Vol. 11, No. 1, January 1993.

26 . F. Garzotto et al.

30. MYLONAS, E., AND HEATH, S. Hypertext from the data point of view: Paths and hnks in the

Perseus Project. In Hypertext. Concepts, Systems and Apphcations (Proceedings of ECHT

‘90), A. Rizk. N. Streitz, and J. Andr6, Eds., Cambridge University Press, Cambridge, 1990,

pp. 324-336,

31. NIELSEN, J The art of navigating through hypertext. Commun. ACM 33, 3 (1990), 296-310.

32. PAOLINI P., CALOINI, A., AND GARZOTTO, F. Active media and gmded tours. Tech. Rep. 78-91,

Dep. of Electronics, Politecnico di Milano, 1991.

33. PARUNAK, H. V. D.. Hypertext topologies and user navigation. In Proceedings ACM Hyper-

text ’87 (Chapel Hill, NC., NOV. 13-15, 1987), PP. 43-50.

34. RAI-RADIO TELEVISION ITALL4NA. The multimedia encyclopedia of philosophy. Tech.

Rep , Dept of Scholarship and Education, RAI, 1991.

35. RICHARD, G., AND RI.ZK, A. Quelques idiies pour une modelizatlon des syst~mes hypertextes.

Techniques et Sctences Informcs@ues. 9, 6 (1990), 505-514.

36. ScHWA~~, D., CALOINI, A., GARZOTTO. F., AND PAOLINI, P. Hypertext development using a

model-based approach. Softw. Pratt. Exper. 22, 11(1992), 937–962.

37. SHNEIDERMAN, B. (ED.) Hypertext on Hypertext. Database and Electronic Product Series,

ACM Press. 1988

38. SMITH, C. K., GARRET, L. N., AND LAUHARD, J. A. Hypermedia templates: An author’s tools.

In F’roceedmgs ACM Hypertext ’91 (San Antonio, Tex., 1991), pp. 147-160.

39 ST’OTTS, P D., AND FURUTA, R. Petri-net-based hypertext: Document structure with brows-

ing semantics. ACM Trans Inf. Syst. 7, 1 (1989), 3–29.

40. STOTTS, P. D., AND FURUTA, R. Hierarchy, composition, scrlptmg languages, and translators

for a structured hypertext. In Hypertext: Concepts Systems and APPILcatzons (proceedings

of ECHT ’90), A. Rizk, N. Streitz, and J Andr6, Eds., Cambridge University Press, Cam-

bridge, 1990, pp. 180-193.

41. TOMPA, F. A data model for flexible hypertext database systems. ACM Trans. Inf. Syst. 7, 1

(1990), 85-100.

42. TRIGG, R. H Guided tours and tabletops: Tools for communicating in hypertext envn-on-

ments. ACM Trans. Znf. Syst. 6, 4 (1988), 398–414.

43. UTTIN~, K,, AND YANKRLOWCH, N Context and orientation in hypertext networks ACM

Trans. Inf. Syst. 7, 1(1989) 58-84

44. ZELLWEGER, P. T. Scripted documents: A hypermedia path mechanism. In proceedings

ACM H.vpertext ’89 (Pittsburgh, Pa., Nov. 5-8, 1989), pp. 1-14.

45. WALKER, J. H. Supporting document development with Concordla. IEEE Computer 21, 1
(1988), 48-59.

46. WIEDERHOLD, G. Database Design McGraw Hill, 1983.

47’. WINTER, R. T. Luduzg Van Beethouen Symphony Number 9. CD Companions Series, The

Voyager Company, 1989

48. YAN~ELOVICH, N. HAAN, B J MEYROWITZ, N. K., AND DRUCKER, S M. Intermedla: The

concept and construction of a seamless information envmonment. IEEE Compater 21, 1

(1988), 91-96

Recewed January 1991; revised April 1992; accepted July 1992

ACM TransactIons on Information Systems, Vol. 11, No. 1, January 1993.

