
Modeling the Dynamic Behavior
of Hypermedia Applications

Paloma DõÂaz, Member, IEEE, Ignacio Aedo, and Fivos Panetsos

AbstractÐHypermedia applications can be defined as collections of interactive and multimedia documents that are organized as a

hypertext net. The development of hypermedia applications poses specific problems, such as the need for modeling sophisticated

navigational structures, interactive behaviors, and harmonic presentations involving the synchronization of contents. Moreover, the

increasing popularity of Internet-based systems has put stress on the lack of mechanisms to formally specify security policies when

designing hypermedia applications. Traditional design models and methodologies are not suitable for hypermedia applications and the

up-to-now developed hypermedia-oriented models do not cover the whole set of design needs. In this context, we present Labyrinth, a

hypermedia-oriented model providing formal elements to describe the static structure and dynamic behavior of this kind of nonlinear,

multisensory, and interactive applications.

Index TermsÐHypermedia, design representation, formal model, multimedia, interactive behavior, security, synchronization, space-

based relations, events, Labyrinth.

æ

1 INTRODUCTION

HYPERMEDIA applications can be defined as collections of
multimedia documents that are organized into a

hypertext net. While multimedia supplies a greater expres-
siveness, hypertext provides a geometry that allows
information to be browsed and presented according to the
needs and preferences of users. Moreover, multimedia also
introduces the concept of interactivity which increases the
system utility, offering the user a wide variety of opportu-
nities to play an active role in the information transmission
processes. Indeed, many educational hypermedia/multi-
media environments include a number of different inter-
active activities oriented toward reinforcing the learning
process of their students [1], [2], [3].

The development of hypermedia applications poses

particular problems which do not appear in other software

applications, such as the need for modeling sophisticated

navigational structures, interactive behaviors, and presenta-

tions where multimedia contents are harmonized in several

dimensions. Moreover, the increasing popularity of Inter-

net-based systems has put stress on the lack of mechanisms

to formalize security policies when designing hypermedia

applications. Rational solutions to all these problems can be

planned during the design phase if designers can rely on

abstract models to formally specify the structure and

behavior of the application under development. Since

traditional design models and methodologies are not

suitable for hypermedia applications [4], [5], a number of

hypermedia-oriented models have been proposed to help

designers to face their conceptualization tasks (such as [6],

[7], [8], [9], [10], [11], [12], [13], [14], [15], [16]).
The majority of the hypermedia-oriented models

developed to date are rather limited, since they are

influenced by the characteristics of a specific authoring

tool, programming language, database structure, or physi-

cal data representation. Even reference models like Trellis

[8], Dexter [9], and Amsterdam [12] cannot be used to

define some features of hypermedia applications [14]. For

instance, Dexter and Amsterdam do not include elements to

formalize security policies oriented toward protecting

information from unauthorized or improper accesses (e.g.,

the typical access control implemented in most web

servers). Besides, Dexter, Amsterdam, and Trellis do not

provide mechanisms to explicitly define composite objects

involving heritage mechanisms, despite being the basis of

several hypermedia authoring tools (e.g., the concept of

ªbackgroundº in HyperCard or Toolbook). More recent

models, such as OOHDM [15] or RMM [16], do not

thoroughly delve into the synchronization problem

although its relevance has been repeatedly stated [17], [12].
Labyrinth is a hypermedia-oriented model which covers

the lacks detected in the aforementioned models and

provides formal elements to describe the static structure

and dynamic behavior of this kind of nonlinear, multi-

sensory, and interactive applications [14]. Since the model is

platform-independent, implementation issues, such as

distribution of information and services, are not considered.

To deal with such issues, a specific layer has to be

implemented under the model specification. This model is

divided into two tightly related parts: a static part, that

includes elements to specify hypermedia applications and,

a dynamic one, which is made up of a number of operations

that can be performed over the elements of the static part.

The present article deals with the specification of behaviors

550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

. P. DõÂaz and I. Aedo are with the Laboratorio DEI, Departamento de
InformaÂtica, Universidad Carlos III de Madrid, Avda. de la Universidad
30, E-28911 LeganeÂs, Spain. E-mail: {pdp@inf, aedo@ia}.uc3m.es.

. F. Panetsos is with the Departamento de MatemaÂtica Aplicada, Facultad de
BiologõÂa, Universidad Complutense de Madrid, Avda. Complutense S/N,
E-28040 Madrid, Spain. E-mail: fivos.panetsos@bio.ucm.es.

Manuscript received 8 July 1998; revised 3 Mar. 1999; accepted 13 Oct. 1999.
Recommended for acceptance by C.E. Landwehr.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107118.

0098-5589/01/$10.00 ß 2001 IEEE

in hypermedia applications using the Labyrinth model,
whose static part was thoroughly presented in [14].

We present a discussion about issues concerning the
design of hypermedia systems and we analyze how different
models, including Labyrinth, face such issues in Section 2.
The main features of Labyrinth are described in Section 3,
while its use is illustrated through several examples in
Section 4. Section 5 includes the conclusions drawn from this
work as well as some ongoing developments.

2 DESIGN ISSUES FOR HYPERMEDIA SYSTEMS

Models are often defined in information technology as

abstract devices that can be used to formally represent the

structural components and function of software applica-

tions. Depending on how detailed and easy to understand

this representation derived from the model is, it can be used

either to initiate the system implementation or, as a basic

document, to analyze the application requirements with the

target users. In any case, a model constitutes a cornerstone

of the design stage of a software application, provided that

it contains elements to gather both the static structure and

the dynamic behavior of the applications.
In fact, each hypermedia development platform has an

underlying model which defines the type of elements that
can be embedded in the application and the processes that
can be implemented. Thus, authoring tools (such as
Hypercard, Authorware, or Director) impose a particular
design discipline based on the metaphor they implement
(stacks, flowcharts, and time baseline, respectively) and a
specific way of defining behaviors constrained by the
programming languages they support (HyperTalk, icon-
based language, and Lingo, respectively). Likewise, mark-
up languages (such as HyTime, HTML, or XML) offer
elements to structure in a specific way hypermedia
applications and define to some extent their hypermedia
features (including links and multimedia contents). In this
case, interactive behaviors are included by embedding
scripts, by means of tags or SMSL (Standard Multimedia/
Hypermedia Scripting Language [18]). An example of
increasing the declarative document model provided by a
mark-up language (SGML and HyTime) using scripts is the
Metafile for Interactive Documents (MID) [19].

Anyway, the use of this kind of specific models is very
restricted, as far as they produce specifications that are
suitable for a particular environment but can not be easily
translated to a different one. Thus, the design can not be
reused if the development is moved on to a different
implementation platform and the effort required to learn
how to use the model is not repaid, unless the same platform
is always used. For this reason, several models have been
proposed in order to generate platform-independent speci-
fications of hypertext and hypermedia applications.

A number of representation abilities can be required of
such models as far as they are intended for gathering the
semantics of hypermedia systems. Since models will be
used to specify hypertexts, they have to provide elements to
represent their structure and browsing semantics in both a
declarative and a procedural way. The model should also
take into account special features introduced by the use of

multimedia, such as the representation of different kinds of
information items, the harmonic and aesthetic combination
of contents, and the definition of interactive behaviors.
Moreover, models should gather the characteristics of
existing hypermedia applications, which are mainly inte-
grated into multiuser environments. Among others, models
should provide conceptual solutions for three basic issues:
the definition of groups of users, the management of
personalised views of the application, and the specification
of security policies aimed at ensuring information integrity
and confidentiality.

In the following sections, each of these requirements are
presented and we discuss the manner in which they are
tackled by Labyrinth and similar models.

2.1 Specification of the Structure

Most hypermedia applications have an intrinsic structure
made up of semantic relationships among their components
which should not be confused with the navigation paths
offered to their users. For instance, there is a clear structural
relationship among the pages of an electronic book,
independent of the supported navigation capabilities.

The structure of a hyperdocument can become blurred
when information holders (nodes) and information pieces
(contents) are considered and treated at the same level,
confounding the logical structure of the application with the
contents delivered to the user. This is the case with models
like Dexter and Amsterdam that use the same element,
called component, to represent both structure and content,
though Amsterdam at least makes the contents (called data
blocks) be the leaves of the hierarchy of components. There
is a need to clearly distinguish between structure and
information following the approach introduced by Tompa's
model [20] and assumed in models like Trellis and
Labyrinth. The latter uses two different elements to
represent structure and information items: nodes and
contents, each having a different composition. For instance,
a content has a representation space, described in the next
section, which is unnecessary for a node.

This separation between structure and content provides
a number of benefits, including cleaner specifications
(where elements that are conceptually different are defined
through distinct elements of the model) and the ability to
share contents by reference, as web pages do with images
and other embedded contents. But, it does not provide
means to represent the inherent structure of most hyper-
media applications. To model complex structures, composi-
tion mechanisms are required. In particular, two abstraction
mechanisms are quite common in hypermedia applications:
aggregation and generalization [21]. Aggregation allows
different elements to be referred to by means of a single
composite element. For instance, a table of contents of an
electronic book aggregates all of its chapters. Aggregated
elements remain independent and do not share properties.
Generalization defines a composite element whose compo-
nents will inherit all its properties. For instance, each page
of an electronic book can be generalized by means of a
generic page where common presentation features are held.
Elements sharing a number of characteristics and/or
behaviors can be grouped by means of this abstraction
mechanism. Both aggregation and generalization are used

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 551

in OOHDM and in the hypertext-oriented model of Richard
and Rizk [22].

In Labyrinth, both abstractions are supported not only to
define composite nodes but also composite contents, so that
design solutions to complex problems can be specified, as
will be shown in the examples of Section 4. On the basis of
these composition mechanisms, we now introduce the
concept of domain. The domain of an object o includes the
object itself, the domains of all the objects o0 aggregated by o,
and the domains of all the objects o00 generalized by o, that is:

domain�o� � o [domain�o0� [domain�o00�j
8o0; o0 2 aggregatedBy�o�
8o00; o00 2 generalizedBy�o�:

All Labyrinth operations concerning nodes or contents
can also be applied to domains so that the operation will
involve all the elements belonging to the domain.

Finally, structures can be specified in a declarative way
but also in a procedural one as in [17]. For instance, the
spatial structures generated by hypertext users described in
[23] can be treated as virtual composites whose items and
organization can only be known at runtime. Such virtual
composites are modeled in Labyrinth through event-based
specifications. In this case, the declarative definition of the
composite is increased by means of an event, whose actions
will determine the identity of its components.

2.2 Representation of Multimedia Information

The representation space of a multimedia content can be
defined using different dimensions (e.g., frames, shots,
scenes, and sequences can be relevant segmentation units in
a movie [24]). Coordinates referring to such dimensions
allow specific fragments of the contents to be univocally
pointed at, whether to set the source or the target of a link
(that is, an anchor) or with other purposes (e.g., to make a
video start from a particular scene). No hypermedia model
provides specific elements to define such spaces except for
Labyrinth, which introduces the possibility of defining for
each content as many representation spaces as needed and
combining them to specify regions of that content. For
instance, an anchor specification can state that it starts in the
third word of the second paragraph of a text and its length
is of three words.

Moreover, multimedia presentations should be aesthe-
tically composed in two dimensions: space and time.
Consequently, mechanisms to establish space-based rela-
tions (called alignment in this paper) and synchroniza-
tions among contents are needed. The need for
synchronizing multimedia presentations, stated in [17],
takes shape in the synchronization mechanism proposed
in Amsterdam [12], but no method to specify space-based
relationships is provided. To compose the multimedia
presentation using the Labyrinth model, contents can be
located into nodes establishing a pair of coordinates which
belong to the node space and time axes, respectively.
Another option to procedurally define the position of a
content consists of using the operations to set alignments
and synchronizations among contents. For example, two
video files can be compelled to be presented without any
spatial overlapping (space-based relation) and to end at

the same time (synchronization). Conditional space- and
time-based relationships can be defined by means of
events associated to nodes, contents, and links. Indeed, the
different types of synchronizations and alignments pro-
posed as technical requirements in the MHEG standard
[25] (script, condition, spatio-temporal, and system) are
encompassed in the model.

Another relevant characteristic to be considered is the
interactive nature intrinsically tied to multimedia applica-
tions. Users not only can interact with the system by
selecting links, but they can also take part in the
information delivery process through a number of activities
which include control commands (such as stop, forward,
rewind, pause, etc.), as well as more creative actions (such
as dragging and dropping objects, writing, drawing, etc.).
Models like OOHDM use events only for presentation
purposes. This concept is enlarged by Labyrinth which
makes use of events also to model interactive behaviors. An
event describes a process carried out when some conditions
are fulfilled (e.g., a message is displayed when two moving
objects meet). The condition of a Labyrinth event encom-
passes the notion of event as ªa nonpersistent occurrence in
the worldº (e.g., clicking the mouse), as well as the concept
of state as ªa thing that persists and we observe in the
worldº (e.g., an object is in a particular spatial position),
both according to the definitions of [26]. The process
executed when the event is triggered is expressed using the
set of operations making up the dynamic part of the model.
Thus, events offer a great potential to specify interactive
behaviors. In addition, since events are independent
elements that can be tied to several nodes, contents, or
links, they can be reused in the same or other application.
The modeling of events has also been encountered in the
object-oriented model presented in [27], although it does
not comprise a set of operations for the formal specification
of interactive behaviors as Labyrinth does.

2.3 Specification of Browsing Semantics

Navigation using links is an essential function of hyperme-
dia systems. Links are usually identified with hotwords and
icons that users can click to move onto a different node.
However, literature shows more complex links which can
be embedded into any area or point of any kind of
multimedia content and can have several sources or targets
(n-ary or multiheaded links [7], [9], [12], [28]). The concept
of anchor, first introduced by the Dexter model, has been
proven to be a very powerful tool when representing the
source and target of a link. However, to set an anchor into a
multimedia content, a mechanism to point at a specific
region of the content is required. Such a region is defined
using coordinates of a representation space which depends
on the nature of the involved content as it was stated in the
previous section. Therefore, designers need a conceptual
tool to define that space equivalent to the one provided in
the Labyrinth contents.

In Labyrinth, a link is defined between two sets of
anchors, sources, and targets, respectively. Anchors can be
declaratively specified in five different ways: referring to a
whole node, referring to a node area or interval, referring to
a whole content, referring to a region of a content's

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

representation space, or referring to a content or content
region only when it is presented in a specific context (node).

Link selection can be used to present additional
information in the same node without moving to a different
context. To include such a function, the Amsterdam model
introduced the idea of context, where the elements that
appear/disappear when a link is activated can be specified.
Such contexts are modeled in Labyrinth using event-based
specifications and, consequently, more powerful span links
can be defined (e.g., the result of activating a link can
depend on the user who selected it).

More complex behaviors can be achieved using virtual
links [29] whose target or source depends on parameters
that can only be known in runtime and, therefore, they
are created when needed. For instance, sources of
Microcosm links [30] are not embedded in the node
specification but are added once a node has been
activated. Other kinds of virtual links whose targets are
dynamically calculated are hot [31], warm [31], and
conditional links [32]. The set of sources and targets that
make up a Labyrinth link can be dynamically calculated
or modified using event-based specifications. The con-
straint imposed in Dexter about dangling links, that is,
links whose source or target does not exist, has been
removed in Labyrinth as in Hyperdisco [28] to represent
both dynamically created anchors and references to
external elements which do not belong to the application.

Links can also be used to represent semantically different
relationships; they can be embedded into different types of
information and their activation can produce a broad

variety of results. For these reasons, the link definition has
been complemented with attributes in models like [33].
Labyrinth distinguishes among the types of links (aggrega-
tion, generalization, referential, and version) and other
attributes which can represent a great number of character-
istics including the link direction (uni- or bidirectional),
author, or presentation specifications.

2.4 Support for Personalized Views

Large hypermedia applications are not designed to meet the

needs and specific interests of each individual user,

especially in web environments usually addressed to a

broad and anonymous audience. The general structural,

presentation, and browsing features of the application

might not satisfy the personal needs or preferences of some

users who can be frustrated by a lot of useless information

organized in a complex hyperstructure. Private views can

be used to modify the user's hyperdocument view, hiding

useless information and redefining the structure of the

hyperdocument to a more familiar one. Moreover, hyper-

media offers an ideal environment for collaborative work

[34], where groups of users cooperate to reach a common

goal. With this purpose, groups and even individual users

can require private spaces to develop their work.
Private views have been explicitly gathered in Neptune's

contexts [35] and in the Trellis model. In the former, only

nodes and links can be personalized and Trellis proposes a

complex mechanism consisting of a special mark-up for a

Petri net to define each personalization. In Labyrinth, the

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 553

TABLE 1
Hyperdocument: Static Definition and Dynamic Management

concept of personalized hyperdocuments is a primary

component of the definition of a hypermedia application,

by means of which elements of a finer granularity than

nodes and links can be personalized (e.g., events). Opera-

tions to personalize elements do not affect the basic

document, similar to the PIE hypermedia system [29]. The

model also includes operations to transfer personalized

elements to the Basic Hyperdocument, where they become

public. Finally, Labyrinth introduces the definition of users

and groups of users, both of which can work in their own

Personalized Hyperdocuments only visible to their owners.

2.5 Inclusion of Elements to Specify Security
Policies

Hyperdocuments are usually implemented as collaborative
environments that make use of intranets or web servers in
order to provide information access to different users. In
such environments, security becomes a main concern since
both integrity and confidentiality of information have to be
preserved. Security is not only an implementation issue.
Security models can be used during the design stage to
translate the rules that will govern information access into
clearances assigned to user roles. An approach to gather
security constraints consists of using a security model to
specify the rules that will control the hyperdocument
access, such as [36], and a hypermedia model to specify
the remaining characteristics of the application (e.g.,
navigational structures, synchronizations, etc.). In contrast

to this approach, which can be cumbersome from a
designer's point of view, we propose the use of a unique
model to specify all the characteristics of hypermedia
applications, including those concerning security issues.

Two models, Trellis and the extended RMM, propose the
definition of ad hoc hyperdocuments for each user to gather
security constraints. Hyperdisco uses discretionary ACLs to
grant users some privileges although such mechanisms can
only be valid if a high degree of security is not required [37].
Other researches in this field are oriented toward more
strict mandatory models, including the multilevel security
policy proposed by Thuraisingham [38] which is based on
an extremely basic hypertext-oriented model. Moreover, its
security levels are defined on the basis of the typical privacy
levels of a database or information system (unclassified,
secret, and top secret) which can seem inappropriate for
hypermedia systems where integrity is far more important
than confidentiality.

In the Labyrinth model, the inclusion of users and the
definition of access categories provide a formal basis for the
specification of security policies using the principles of
information flow security models, although considered
from an information manipulation perspective. Security
categories are used to classify the kind of actions a user can
carry out in a hyperdocument or domain (browsing,
personalizing, and editing, each one enlarging the privi-
leges of the previous one). These security categories, or
clearances, are used by an access control function to

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 2
Users: Static Definition and Dynamic Management

constrain the manipulation ability of users according to

their role in a particular context (node, content, or domain).

Moreover, objects (nodes, contents, and domains) have a

security category which determines the most permissive

kind of operation they can undergo. When a user initiates

an operation, a security check matches the user category

against the security category of the involved objects to

decide whether to proceed or not.

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 555

TABLE 3a
Nodes: Static Definition and Dynamic Management

3 THE LABYRINTH MODEL

This section describes the Labyrinth components from both
perspectives, static and dynamic. The dynamic part, that
offers a number of operations concerning the usage and
management of hypermedia applications, is studied in
depth since the static part is thoroughly presented in [14].

The use of the Labyrinth model to gather the character-
istics of hypermedia applications can require the combina-
tion of a declarative model of hyperdocument with event-
based specifications. The declarative model can be used to
represent those features of hyperdocuments which are
expected to remain stable in the sense that they do not
depend on any external factor and they have a meaningful
existence by themselves. However, several hypermedia
applications, such as dynamically created web pages or
adaptive systems, involve structures, contents, or interfaces
that are created at runtime, that is, what Halasz called
virtual objects [29]. In such cases, the declarative model has
to be enlarged with event-based specifications where both
the conditions constraining the object creation and the
process building the object are established.

3.1 The Basic and Personalized Hyperdocument
(HDB and HDP)

The Labyrinth model defines a hypermedia application as
the union of a Basic Hyperdocument and a Personalized
Hyperdocument (see Table 1). A hyperdocument is a fully
connected hypermedia application made up of nodes
connected through links, in such a way that each node is
connected to a ªhubº node, whether directly or not [39]. The
ªhubº node plays an important role in the hyperdocument
definition since it represents the hyperdocument itself and
contains information concerning the entire application.

The Basic Hyperdocument (HDB) includes the public
components of the application while the Personalized
Hyperdocument (HDP) consists of a number of private

views (HDPi) only accessed by their owners, whether
individual users or groups. The HDB consists of sets of
Users (U), Nodes (N), Contents (C), Anchors (A), Links (L),
attriButes (B), and Events (E) and the functions of location
(lo), attributes list (al), events list (el), and access list (ac),
that will be described below. Each HDPi is composed of the
user identifier of the personalization owner (UserId) and
adaptations of items defined in the basic hyperdocument,
except for the access list (ac) that need not be personalized
according to the definition of Personalized Hyperdocument
(it can only be accessed by its owners and, therefore, no
access rights need to be specified). Thus, NP , CP , AP , LP ,
BP , and EP are either composed of new elements or
modifications of the corresponding components of HDB.
Similarly, lop, alp, and elp are also composed of new or
modified functions.

The dynamic part of the model includes operations that
allow hyperdocuments to be created and removed, as
summarized in Table 1. Each operation of the dynamic
model includes a procedure that, following the security
model explained in [40], is executed to decide whether the
operation can or cannot be done. Such a procedure analyzes
information about the subject (user) and the objects
involved in the different actions to be carried out. Subjects
require a clearance not lower than the security category of
the objects to be granted permission. If this security check
does not succeed, the operation is not performed. Each
operation is treated as a transaction which is only executed
if all its actions are considered safe.

Each of the elements of the basic and personalized
hyperdocuments are described below.

3.2 The Set of Users (U)

Users of hypermedia applications, whether individuals or
groups, are included in this set whose static definition is
shown in Table 2. Each user (Ui) is made up of a UserId

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 3b
Nodes: Static Definition and Dynamic Management (cont.)

which identifies the user, a UserType, which states if the

user is an individual or a group, and a list of user identifiers

(UserList) whose meanings depend on the UserType: It

includes the list of groups an individual user belongs to or

the list of members of a group.

The user definition can be increased with attributes

referring to its characteristics, properties, or other relevant

information. Such attributes are defined and their values

are modified by means of the appropriate operations

concerning attributes (see Sections 3.7 and 3.10).

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 557

TABLE 4a
Contents: Static Definition and Dynamic Management

The dynamic model includes operations to create,

modify, and delete users as well as to obtain information

about their components (see Table 2). Concerning the

security procedure, operations compromising the general

policy of the application (e.g., creation of users or modifica-

tion of their abilities) should be allowed only to a special

user responsible for the security of the system. This security

manager can be implemented as a unique user or as a

number of different users. Our recommendation is to keep

this security manager within a very restricted group of

users that should not include all authors of a hyperdocu-

ment since most hypermedia systems are running in high

risk environments (e.g., web servers) permanently threa-

tened by malicious users. As exposed in [37], the respon-

sibility of managing a security policy can only be put at the

user's side when few and not drastic attacks are expected.
With the inclusion of the set U in the model, the three

following issues can be addressed during the design stage:

. A users' structure can be specified defining groups
of users that collaborate in a particular information
domain.

. A security policy can be formally specified by means
of the access function ac (see Section 3.12).

. Designers can define private hyperdocuments which
belong to particular users, whether group or
individual users. Personalized Hyperdocuments
belonging to a group of users can be modified by
all the members of the group since access control
processes are not applied in private views.

Since users can belong to more than one group, several

choices can be offered at runtime, including the ability to

decide whether to work as an individual user or as member

of a particular group [41].

3.3 The Set of Nodes (N)

A node is an abstract information holder that can contain

any type and number of information items. The node

represents the smallest information retrieval unit of the

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 4b
Contents: Static Definition and Dynamic Management (cont.)

hyperdocument from the user's perspective (e.g., a page of
an electronic book) since contents can not be retrieved
without being presented in a node. Each node should be
self-aimed, that is, it has to use as many media as needed to
wholly present a particular concept, topic, problem, or
question to be discussed.

From a static point of view (see Tables 3a and 3b), a node
(Ni) has a unique identifier (NodeId), which, in the system
implementation, can be resolved to an internal value
automatically assigned by a centralized system or to a
URI (Uniform Resource Identifier) referring to external
resources of a distributed environment. Each node has a
security category (NodeCategory) that establishes the most
permissive type of operation that both the node and its
components (links, attributes, and events) can undergo. The
NodeCategory has to be set to one of three possible values,
each one enlarging the privileges of the previous one:
ªbrowsing,º ªpersonalizing,º or ªediting,º which permit
visiting, adding personalizations, and updating the Basic
Hyperdocument, respectively.

Apart from information holders, nodes can act as
composites that, combined with typed links, are used to
represent two structural relationships: aggregation and
generalization. When a composite generalizes/aggregates
a number of nodes, a Generalization/Aggregation link is
established from the composite to its components. Thus,
composites and typed links provide a formal way to define
the hyperdocument structure.

Contents and anchors can be placed into nodes at a
precise moment and/or location (see Sections 3.9 and 3.5,

respectively). Moreover, any number of attributes that
enrich the node definition can be assigned to a node by
means of the al function (see Section 3.10). In particular,
nodes have two mandatory attributes automatically as-
signed whenever a node is created: ªLabel,º that adds
meaningful information to the node description and,
ªAuthor,º that holds the user who created the node. Finally,
the dynamic characteristics of a node can be specified by
means of events tied to it through the el function (see
Section 3.11).

The set of Nodes is managed by means of several
operations related to the composition and management of
nodes as well as with the definition of aggregations and
generalizations. Versions can be defined and nodes, either
simple or composite, can be transferred from a persona-
lized hyperdocument to the basic one and vice versa (see
Tables 3a and 3b).

3.4 The Set of Contents (C)

A content is an information item (e.g., a text, a graphic, or

an animation) that can be placed in different nodes.

According to its static definition (see Tables 4a and 4b), a

content (Ci) consists of an identifier (ContentIdi), a security

category (ContentCategoryi), used as in the nodes, and a

type (ContentTypei) which defines the kind of information

represented (Typei) and the different units that make up the

content's representation space (Unitsi). The content identi-

fier can be implemented in the same way as the node

identifier to refer to both external and local resources.

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 559

TABLE 5
Anchors: Static Definition and Dynamic Management

The same as nodes, contents can also be composites and

they have associated some attributes and events. Manda-

tory attributes of contents are the same as those of nodes.
Operations concerning this set allow contents to be

added, removed, duplicated, and moved from one hyper-

document to another (see Tables 4a and 4b).

3.5 The Set of Anchors (A)

An anchor is an interval of coordinates of a representation

space that is used as a starting or ending point of links (e.g.,

a hotword in a text, and a hotspot in an image). Thus,

anchors can be embedded into nodes and contents and, if

the anchor interval is not specified, it refers to the whole

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 6
Links: Static Definition and Dynamic Management

TABLE 7
Attributes: Static Definition and Dynamic Management

component. Anchors were introduced in classical hypertext
systems such as Neptune [6] and Intermedia [42].

From a static point of view (see Table 5), an anchor (Ai)
has an identifier (AnchorIdi), references to the elements
where it is embedded (NodeIdi and ContentIdi), and an
AnchorPosi, which defines its initial location (Positioni)
and extension (Extensioni).

Anchors can be embedded into nodes and contents in
three different ways:

a. An anchor can be tied to a content and only be active
when the content is presented in a particular node
by assigning a value different from -1 to both
ContentIdi and NodeIdi.

b. An anchor can be tied to a content and be active in
every node where the content is placed by assigning
-1 to NodeIdi.

c. An anchor can be tied to a node by setting
ContentIdi to -1.

In cases a and b, AnchorPosi is expressed using the
different units that make up the representation space of the
involved content. Thus, an anchor can be embedded into
any place and any type of content. If the anchor is tied to a
node, case c, AnchorPosi refers to a temporal and/or spatial
locus or interval (e.g., the right area of a node can be used to
navigate to the next node whereas the left one can link to
the previous node).

Some operations describe the dynamic management of
the link sources and targets (see Table 5). They include
creation, deletion, and one access operation that retrieves
the links which contain a particular anchor. In agreement to
[37], anchors hold the highest security category of the
objects involved in their definition (i.e., the node and/or
content where they are embedded). Therefore, to determine

whether a user is allowed to carry out an operation or not,
the security check analyzes the user access category for the
nodes and/or contents included in the definition of the
anchor. If the user is granted access to a node, only those
contents for which he/she has at least a browsing category
will be delivered. Thus, different users can have distinct
views of the same node depending on their clearances.

3.6 The Set of Links (L)

A link defines a relationship between two sets of anchors:
the starting and ending points of a connection that can have
navigational or structural purposes. All the links of the
application are included in this set, whose formal definition
is shown in Table 6. Each link (Li) consists of an identifier
(LinkIdi) and two lists that contain the start (LinkStarti)
and end anchors (LinkTargeti), respectively. Consequently,
n-ary links can be defined. Moreover, since both the source
and the target can be procedurally defined assigning an
event to the link (see Section 3.11), virtual links (including
dangling, warm, and hot links) can also be modeled.

Links can have associated events and attributes. Man-
datory attributes include those of the nodes and two
additional ones: ªLinkTypeº and ªDirection.º When a
new link is created, the attribute, called ªLinkType,º is
assigned to it and its value is used to discriminate among
three semantically different types of links: referential links,
that define navigation paths; aggregation and general-
ization links, that establish a hierarchical relation between
composites and their components; and, version links, that
sequentially connect different versions of a node or a
content. Likewise, the ªDirectionº attribute is associated to
each new link and it is used to establish whether the link is
unidirectional or bidirectional; the latter is included in
hypermedia systems like Intermedia and Concordia [43].

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 561

TABLE 8
Events: Static Definition and Dynamic Management

Selecting a link can give rise to a number of reactions,

including navigating to a different node, delivering, or

hiding a particular content within the same node (e.g., the

stretchtext technique, that is in-line expansion of text,

introduced in Guide [44]) or opening an external

application or program. In the Labyrinth model, the link

reaction can be specified associating an event with the

appropriate actions to the link (see Section 3.11).
The conceptual and physical separation between the link

and the content/node where it is embedded makes the

hyperdocument easier to maintain, increasing its openness.

This approach has been successfully implemented in open

hypermedia systems such as Microcosm [30], [45]. More-

over, since the identifiers of nodes and contents refer to

external resources, links point at documents which do not

belong to the hyperdocument.
The dynamic management of links (described in Table 6)

includes such operations as creation, deletion, duplication,

activation, as well as operations to obtain information about

the structure of the hyperdocument (for instance, to retrieve

the nodes connected by a link).

3.7 The Set of Attributes (A)

An attribute is a characteristic that will be used to add
semantic information to an element of the application.
From a formal point of view (see Table 7), an attribute
(Bi) is defined by means of a label (AttributeNamei) and a

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 9
Location Function: Static Definition and Dynamic Management

Fig. 1. Aligning contents.

value (V aluei) that will be used by default if no other
value is specified during the attributes assignment (see
Section 3.10). There are some mandatory attributes, such
as ªLabel,º ªAuthor,º ªLinkType,º or ªDirection,º that
always exist in a hyperdocument (see the specification of
the operation ªcreateHyperdocumentº in Table 13).

The dynamic part of the model includes operations to
create, delete, and modify attributes (see Table 7). More-
over, information about the attributes can be retrieved. With
respect to the security rules, only users granted an editing
category for the basic hyperdocument (that is, for its ªhub
nodeº) will be able to modify all the attributes. Attributes
defined in a personalized hyperdocument can only be
modified by the owners of the personalization.

3.8 The Set of Events (E)

A Labyrinth event is formally specified as shown in Table 8.
Each event (Ei) includes an identifier (EventIdi), a Boolean
expression (Conditioni) where the conditions determining
the event activation are specified, and the list of actions
(ActionListi) that have to be performed whenever the event
is enabled (that is, when its conditions are fulfilled or when
the event is directly triggered from another event).

The list of conditions includes a Boolean expression
whose terms can include references to internal values (e.g.,

time) or external values (e.g., user interactions). The list of

actions may contain any operation carried out over a model

element and low-level actions such as searching for a string,

comparing values, etc.
Events can be tied to nodes, contents, and links by means

of the el function with a view to gathering the most

dynamic aspects of hyperdocuments.
Operations on the set of Events (see Table 8) include

processes related to their maintenance (such as creation,

deletion, duplication). The same security rules that apply to

attributes are applied for events. Thus, events in the basic

hyperdocument can only be modified by users granted an

editing category for the basic hyperdocument (that is, for its

ªhub nodeº) while those defined in a personalized

hyperdocument are modified by the owners of the

personalization.

3.9 The Location Function (lo)

Contents can be placed into nodes by giving a value to the

lo function, whose definition is shown in Table 9. A logical

value (Positioni) specifies a spatial locus in the node

representation space, while another one (Timei) defines the

time when it is presented (StartTimei) and the duration of

this presentation (Durationi).

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 563

Fig. 2. Synchronizing contents.

TABLE 10
Attributes List Function: Static Definition and Dynamic Management

The ability to specify the location of contents in different

axes and to define a duration can be exploited to create

multimedia presentations. The dynamic management of

this function (see Table 9) allows contents to be placed into

nodes or to be removed from nodes. The latter operation is a

deletion of a tuple of the location function and does not

imply the deletion of the content from the Hyperdocument.

It is also possible to get information about the nodes that

include a particular content and vice versa.

There are two crucial operations that allow richer
multimedia presentations to be specified: the alignment
and the synchronization. Both operations are used to gather
spatial and temporal relationships among contents within
the scope of a particular node. When such relations are
established, they can be compelled to be maintained even if
the contents are moved across the representation space of
the node. In that case, the alignment or synchronization is
represented in the static elements of the hyperdocument by
means of an event tied to the node. Since the event is

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 11
Events List Function: Static Definition and Dynamic Management

TABLE 12
Access List Function: Static Definition and Dynamic Management

independent from nodes and contents, its activation
condition can be increased to represent richer space and
time-based relationships. For instance, if we want to
synchronize a speech with its written text only if students
are at the beginners stage, an event is tied to the
corresponding node and its condition states that ªthe node
is activated and the user is at the beginners stage.º

Alignments can be defined taking into account at least
one of the following three aspects as recommended in [27]:

. The topological relation existing among the con-
tents, which assumes the 4-intersection model
presented in [46], where the relationships among
spatial regions are defined considering the inter-
sections between their interiors and boundaries.
The topological relation can be set to one of the
following values: disjoint, touch, covers, contains,
equal, overlapDisjoint, and overlapNotDisjoint.

. A directional relation that can be bound to one of the
following eight values: up, down, right, left, right-
up, left-up, right-down, and left-down.

. The distance between the contents that is specified
by means of a pair (x,y) that states a displacement in
the two spatial axis of the node.

An alignment is a one-to-many directed arc between
contents which represents a particular space-based rela-
tion. Each alignment has a label that includes three
parameters whose value represents the topology, direction,
and distance, respectively, which have to be maintained
among the source and the targets of the arc. If no value is
specified for any of them, it is assumed that no constraint
applies for that aspect of the space-based relation. Several
aspects can be bound to a value to express more complex
dependencies. For instance, Fig. 1 shows an example of
alignment of two contents, A and B, whose position can be
changed as far as they always fulfill the three conditions
stated in the alignment arc. Dashed lines are locations
calculated from the alignment.

A synchronism is a one-to-many directed arc between
contents. The synchronization has a label that includes a
pair of values which represent the temporal delay which
has to be added to the start and/or the end of the source
to derive the start and/or the end of the targets. Such

values can also be expressed making use of the duration
of the content specified in its formal definition. This
synchronism model follows the principles of interval-
based conceptual models which use temporal intervals to
represent the presentation time of multimedia contents
[47] and it encompasses the set of temporal relationships
presented in two representative models of time-based
relationships [48] and [49] and the choices considered in
Amsterdam. Fig. 2 illustrates a synchronization among
three contents. Dashed lines represent locations calculated
from a synchronism.

3.10 The Attribute List Function (al)

Attributes are tied to users, nodes, contents, and links by
means of the al function (see formal definition in Table 10),
which acts as a repository of properties. The default value
specified in the attribute definition (see Table 7) can be
changed giving a new value (V aluei). Since each element
has at least one mandatory attribute (ªLabelº), all users,
nodes, contents, and links defined in the hyperdocument
take part in this function. Indeed, whenever a new user,
node, content, or link is created, the list of its mandatory
attributes is added to this function and if no value is
specified for them, the default value given in the attribute
definition is assumed.

Attributes constitute a powerful source of information
about users, nodes, contents, and links, that can be
exploited in different ways. For instance, assigning nodes
and links a type can provide the basis for the automatic
generation of richer navigation maps that use colors to
distinguish among the different elements of the map as in
[50]. Another use of attributes can be to hide valuable
information for indexing [51] or information retrieval
purposes [52], including the runtime management of the
hyperdocument elements.

The dynamic part of the model (shown in Table 10)
contains operations that permit assigning attributes to
nodes, contents, links, and users, as well as modifying their
value. Designers are also provided with several access
operations which can be used to seek information about the
different tuples of this function. With respect to the security
rules, each attribute assignment inherits the security
category of the element to which it is tied. Indeed, to

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 565

TABLE 13
Description of the createHyperdocument Operation

decide whether an attribute assignment can be modified it
must be determined if the user is permitted to modify the
node, content, or link involved. Attributes tied to a
particular user can only be modified by that user.

3.11 The Events List Function (el)

The el function (see Table 11) allows events (EventIdi) to be
associated to nodes, contents, and links and to define a
priority (Priorityi) that helps solve events' concurrence.

Events can be used for different purposes including: the
modeling of virtual elements (nodes, contents, anchors,
links, attributes, events, or their relationships) that are
created at runtime, conditional links, whose target depends
on some circumstances, and any kind of interactive
behavior.

Operations to assign, deassign, and modify the priority
of events are provided in the dynamic model (see Table 11).
Moreover, there are some access operations that return the
events tied to a particular element.

3.12 The Access List Function (ac)

The access list function (see Table 12) assigns access
categories (AccessCategoryi) to users (Ui) depending on

the context (node, content, or domain) where they are
working. Consequently, and since a mandatory security
policy is assumed, each user must have a specific
privilege to manipulate each node and content in the
hyperdocument.

The ac function is used to preserve information con-
fidentiality, and integrity, assuming the security model
presented in [40].

On the one hand, and in order to guarantee confidenti-
ality, an access matrix model [53] is simulated by assigning
the zero value to the users who cannot access a node,
content, or domain.

On the other hand, and with a view to preserving
information integrity, a specific user clearance can be
assigned once access has been pemitted, so that the user
manipulation ability will depend on its role in a given
context as recommended in [54]. Three clearances are
considered (browsing, personalizing, and editing) each
one enlarging the privileges of the previous one. Thus,
ªbrowsingº users will be able to access the elements (that is,
they can retrieve them and interact with them); ªpersona-
lizingº users will also be able to include personal elements
and ªeditingº users will also be able to modify the Basic

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 14
Description of the createNode Function

Hyperdocument. If the user is an individual, its clearance
prevails to the clearance of the group to which it belongs.

Operations concerning the ac function (see Table 12) are
related to the management of users, groups, and abilities to
access the hyperdocuments. Only a security manager
should be authorized to perform these operations in order
to implement a mandatory security policy that will
guarantee information integrity. To ease the management
of this function, the security privileges of users can be
specified for a specific node, content, or domain.

3.13 Examples of the Specification of Operations

In this section, the specification of the dynamic part of
Labyrinth is illustrated by means of two examples: the
creation of a hyperdocument and the inclusion of a
new node.

3.13.1 Creating a Hyperdocument

The first operation to be performed in any application is the
creation of a hyperdocument. This task should be carried
out by the security manager that will be responsible for
generating a hyperdocument with the minimum informa-
tion needed. In this minimum hyperdocument, no perso-
nalizations are considered and, therefore, there is only a
basic hyperdocument whose unique user is the security
manager. With this purpose, the user will execute the
ªcreateHyperdocumentº operation whose detailed specifi-
cation is shown in Table 13, providing a value for her own
identifier and a value for her attribute ªLabelº that could be
her name. The following user identifiers will be automati-
cally assigned. This operation creates each set and function
and assigns them the appropriate values. For instance, the
ªhubº node is created and all the mandatory attributes are
included in B.

Once the hyperdocument has been created, the security
manager ought to include the users of the application using
the ªcreateUserº operation (see Table 2). The next step will
consist of assigning users the appropriate access category to
manipulate the hyperdocument (hubNodeId) by means of

the ªsetUserCategoryº operation (see Table 12). Then, users
will be able to define the structure of the hyperdocument
and include their contents and other elements. Those users
granted an ªeditingº category will be able to create nodes,
contents, and other elements and, therefore, they will
contribute to the hyperdocument development. Those users
having a ªpersonalizingº category will be able to create
personalized hyperdocuments that will not be seen by other
users. Finally, users assigned a ªbrowsingº category will
only be able to read and interact with the hyperdocument.

3.13.2 Including a New Node

To create a new node, whether composite or not, the
ªcreateNodeº operation can be invoked (see description on
Table 14). To create a new node in the basic hyperdocument
the user needs to have an ªeditingº category for the
hyperdocument whereas to generate a personalized node
a ªpersonalizingº category is required. If the operation is
allowed (i.e., security checks succeed), a new node, with an
identifier and an appropriate security category, is included

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 567

Fig. 3. Screen of META with a glossary link.

Fig. 4. The graphical representation of the modeling of a glossary link.

in the set N or NP , depending on the value of the parameter
ªscopeº (see Table 14). The node will be assigned its two
mandatory attributes: ªLabel,º whose value is explicitly
given by the user and ªAuthor,º which is bound to the
value of the user identifier executing the operation.
According to the mandatory security policy assumed in
the model to preserve information integrity, the node
category can not be decided by its author but rather by
the security manager. With this purpose, a default value,
which is the most permissive one (i.e., ªeditingº), is
automatically assigned, although the security manager can
modify it by means of the ªsetNodeCategoryº operation
(see Tables 4a and 4b). Since there is also a discretionary
access model intended to preserve information confidenti-
ality, authors can restrict the access to the nodes they create.
For this reason, the user has to specify those users
(userList) that will not be excluded from the access list of
the node. Initially, they will be assigned the most restrictive
category (that is, ªbrowsingº) and it can be latter changed
by the security manager by means of the ªsetUserCategoryº
operation (see Table 12). Although this approach might
seem too restrictive, the severity of the expected risks in a
distributed environment require mandatory policies which
translate the security responsibilities from the user to a
special manager. Users whose identifiers are not included
in userList of a node are not allowed even to browse the
node. This userList can be modified by adding and deleting
users through the ªsetUserCategoryº operation. The same
security rules are assumed for the contents. Finally, the
author of the node is assigned the most permissive
category, that is, ªediting.º

4 USING THE LABYRINTH MODEL TO SPECIFY

DYNAMIC BEHAVIORS

The model can be used as a design tool since its components
allow structures and behaviors to be unambiguously
specified for any hypermedia application. With this
purpose and, in order to increase the usability of the
model, a graphical representation of its components can be
used. In this section, we present two examples of this kind
of usage, both of which are based on the META educational
application [55].

META is a hypermedia system aimed at helping low-
qualified women study the most difficult subjects of the
primary school. The system contents are mainly centered
on social and natural science subjects which are used to

introduce linguistic and mathematical concepts. Contents
are structured as a set of modules made up of lessons.
Each lesson includes several nodes with theoretical
explanations, visual examples, and interactive exercises
that provide students with self-evaluation mechanisms.
Hypermedia links are defined among concepts and
explanations, providing a quick access to related informa-
tion. META has been developed as a CD, working under
the Windows 95 operating system.

The two examples have been selected because their
modeling involves intrinsic features of hypermedia applica-
tions and they illustrate the suitability of Labyrinth to
model the dynamic behavior of this kind of applications.
Thus, the first one is concerned with the specification of
virtual links (that is, links whose source or target is
dynamically calculated), whereas the second one consists
of the use of dynamic management of events. Both of them
represent quite complex examples of modeling, but since
they were used many times during the implementation, the
effort required to develop them was worthwhile.

Example 1 (Modeling links to the glossary entries). Some
terms of the textual contents included in the lessons are
linked to a glossary, where definitions for difficult
concepts are provided. Fig. 3 shows an example of a
glossary link included in the lesson ªLa lenguaº
(Language), where the main characteristics of a language
and the different languages spoken in Spain are

568 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 15
Event Specification for the Glossary Link

Fig. 5. The crossword exercise.

presented. The word ªmensajeº (message) included in
the definition of language is linked to the glossary,
whose ªmensajeº entry is shown in a pop-up window.

Links to the glossary can be modeled in two
different ways:

. A specific link is defined from each term to its
entry in the glossary and, therefore, as many links
as glossary entries are maintained.

. A unique virtual link is established, whose target
is calculated taking into account the content
where the source is embedded.

The modeling of the latter solution using Labyrinth,
which eases the resulting design and decreases the
number of links to be maintained, is graphically shown
in Fig. 4. The node (N-LMI-001) represents the screen
shown in Fig. 3, and the localization function is used
to place the content concerning the language definition
(C-Lang-01), which includes a link to the glossary. This
link is defined as an n-ary link among all the contents
including a reference to the glossary and the ªGlossary
windowº node (see the link anchor in C-Mat-24 that
connects a geometry description with the definition of
ªpointº). When selected, the specification of the source
anchor of the link is used to put the appropriate
content into the ªGlossary window.º In order to
optimize the searching process, all entries of the
glossary are aggregated by means of a composite
content (C-Gloss-000) so that they can be referred to by
a unique identifier.

Thus, the target of the glossary link is virtually
specified tying an event (E-078) to the link, whose formal
definition is presented in Table 15.

Example 2 (The crossword exercise). The second example,
shown in Fig. 5, consists of an interactive exercise that
asks students to fill a crossword with the four main

biogenic elements (ªCarbono,º ªNitroÂgeno,º ªOxõÂgeno,º
and ªHidroÂgenoº). With this purpose, women are
presented a crossword structure and a sequence of
characters that have to be placed into the squares using
the mouse. When a character is selected, it follows the
cursor movement till it is dropped into a square.
Students can remove a character from the crossword by
clicking on it and they can check the exercise correctness
selecting a checking button (the one placed before the
exercise statement). This exercise represents a good
example of interactivity, one of the basic pillars of
multimedia.

The exercise (see Fig. 6) is modeled by means of a
node (N-SNI-E097) where four contents are placed:

. the checking button (C-SOCNAT-087), that allows
the exercise to be checked,

. the problem statement (C-SOCNAT-088), which
asks students to solve the exercise,

. the Spanish alphabet (C-GEN-046), that can be
used by students to write, and

. the crossword (C-SOCNAT-089) where the bio-
genic elements have to be written.

To generate a cleaner and clearer design, several
composite contents gather the logical characteristics of
this type of exercise. First, an aggregation is used to
collect all the crossword squares involved in this
particular exercise so that they can be referred to by
means of a unique identifier: C-SOCNAT-089. Second,
three composites are used to gather the crossword
behavior:

. A generalization content (C-GEN-078) gathers the
commonalties of all squares and is used to decide
if a student guesses which character is hidden

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 569

Fig. 6. The crossword modeling.

under the square. With this purpose, C-GEN-078
includes two attributes: the correct character
assigned to the square (ªCAº) and the character
actually written by the student (ªCWº) which is
updated runtime. This composite has also an
event (E-121) that updates the ªCWº attribute
when a character has been dropped into the
square.

. A composite content (C-GEN-018) generalizes the
elements (characters and digits) that can be put
into the crossword squares and it has associated
one event (E-120), that formalizes the process of
writing into the crossword and one attribute
(ªHolderº) that is used to directly refer to the
square where the character is written.

. A composite content (C-GEN-046) aggregates the
characters making up the Spanish Alphabet so
that they can be placed anywhere by using a
unique identifier.

Since these three composites formalize a general
behavior for a crossword that does not depend on the
words involved, they can be reused in similar exercises.

The behavior of any crossword is modeled through
the events presented in Table 16. The crossword has
two basic elements: a sequence of characters and one of
squares. Each character in the sequence has associated
an event (E-120) that creates a copy of the character to
be written in a square. With this purpose, another
event (E-190), that is tied in runtime to the new
character, assigns the position of the new character to
the position of the cursor. Once the new character has
been dropped into a square, another event (E-121)
deassigns E-190 from the character (so that its position
cannot be modified), updates the attribute ªCWº
(character written) of the square, and ties an event
(E-191) to the character in order to allow its deletion.
The checking process of the exercise is modeled
through an event (E-068) tied to the checking button.

570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

TABLE 16
Events Specification for the Crossword Exercise

This event will present one of two messages: ªcorrectoº
if the answer provided by the student is correct and
ªincorrectoº in other case.

5 CONCLUSIONS

There is an increasing number of models aimed at gathering
hypermedia semantics. Hypertext-oriented models (includ-
ing [6], [7], [8], [9], [10], [13]) are inadvisable for the
specification hypermedia applications since they do not
provide mechanisms to gather both the special features of
multimedia components (e.g., the existence of temporal and
spatial relationships among contents) and their interactive
behaviors. Hypermedia-oriented models (including Trellis,
Dexter, Amsterdam, OOHDM, or extended RMM) do not
properly face all the problems related to the conceptual
design of this kind of application. In particular, the absence
of concrete mechanisms to represent interaction capabilities,
multimedia presentations, and security policies that will
ensure information integrity and confidentiality represent
lacks in these models.

In this paper, we have presented the Labyrinth model
and, in particular, we have focused on the dynamic
management and behavior of applications that can be
formally defined by means of the events and the complete
set of operations making up the dynamic part of the model.
Events, as sets of actions triggered under particular
conditions, provide the basis for the specification of
behaviors that can go beyond browsing capabilities of
hypermedia applications, as shown in the examples pre-
sented in the previous section (definition of virtual links
and dynamic management of events and attributes). More-
over, other relevant features of Labyrinth are the following:

. It provides elements to specify the static structure of
hyperdocuments including composition mechanisms
that allow defining and managing generalizations
(and the reverse relation, particularization) and
aggregations that can be applied to nodes and
contents. Structures can be procedurally specified
using events.

. Representation spaces offer a mechanism for the
definition of several coordinates for each multimedia
content and, therefore, the more ªnaturalº and
appropriate measurement units can be specified for
each type of content. Thus, anchors can be placed
into any position of any content by only specifying
an initial position and an extension, both of them
expressed in terms of the representation space of the
involved content.

. Synchronizations and space-based relationships
(called alignments in Labyrinth) can be used to
compose richer multimedia presentations.

. Users and groups of users can work in their own
private views of the hyperdocument, called Perso-
nalized Hyperdocuments.

. The inclusion of users and the definition of access
categories both provide a formal basis for the
specification of a mandatory security policy during
the design stage.

There are some aspects of implementation that are not
covered by the model, such as the specification of the

presentation characteristics of multimedia elements or the
inclusion of a scripting language.

The model is supported by a design methodology [56]
that guides the designers from their particular conception of
the problem to a logical solution expressed in a formal
specification that can be understood by the programmers or
even used for automatic generation of code. The methodol-
ogy consists of two phases: the Conceptual Design, aimed at
producing a logical skeleton of the application in terms of
structure, processes and behaviors, navigation capabilities,
and presentation features; the Detailed Design, where the
logical skeleton is instanced to completely specify the
hyperdocument.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous
referees and Dr. Carl E. Landwher for their very helpful
comments.

REFERENCES

[1] N. Benamou and A. Celentano, ªProduction or Interactive
Multimedia Courseware with Mathesis,º Prod. Design and Produc-
tion of Multimedia and Simulation-Based Learning Material. pp. 61-82,
1994.

[2] S. Bagui, ªReasons for Increased Learning Using Multimedia,º J.
Educational Multimedia and Hypermedia, vol. 7, no. 1, pp. 3-18, 1998.

[3] P. DõÂaz, I. Aedo, N. Torra, P. Miranda, and M. MartõÂn, ªMeeting
the Needs of Teachers and Students within the CESAR Training
System,º British J. Educational Technology, vol 29, no. 1, pp. 35-46,
1998.

[4] M. Fuller, R. Sacks-Davis, R. Wilkinson, and J. Zobel, ªHyperbase
Systems: A Structured Architecture,º Proc. Second Far East Work-
shop Future Database Systems, pp. 222-230, Apr. 1992.

[5] F. Garzotto, P. Paolini, and D. Schwabe, ªHDMÐA Model-Based
Approach to Hypertext Application Design,º ACM Trans. Informa-
tion Systems, vol. 11, no. 1, Jan. 1993.

[6] N.M. Delisle and M.D. Schwartz, ªNeptune: A Hipertext System
for CAD Applications,º Proc. Int'l Conf. Management of Data,
pp. 132-143, May 1986.

[7] F. Tompa, ªA Data Model for Flexible Hypertext Database
Systems,º ACM Trans. Information Systems, vol. 7, no. 1, pp. 85-
100, 1989.

[8] P.D. Stotts and R. Furuta, ªPetri-Net-Based Hypertext: Document
Structure with Browsing Semantics,º ACM Trans. Office Informa-
tion Systems, vol. 7, no. 1, pp. 3-29, 1989.

[9] F.G. Halasz and M. Schwartz, ªThe Dexter Hypertext Reference
Model,º Proc. World Conf. Hypertext, pp. 95-133, 1990.

[10] D.B. Lange, ªA Formal Model of Hypertext,º Proc. Hypertext
Standardization Workshop, pp. 145-166, 1990.

[11] P.D. de Bra, G. Houben, and Y. Kornatzky, ªAn Extensible Data
Model for Hyperdocuments,º Proc. of the ACM Conf. Hypertext,
pp. 222-231, 1992.

[12] L. Hardman, D. Bulterman, and G. Van Rossum, ªThe Amsterdam
Hypermedia Model: Adding Time and Context to the Dexter
Model,º Comm. ACM, vol. 37, no. 2, pp. 50-62, 1994.

[13] B. Wang and P. Hitchcock, ªInterSect_DM: A Hypertext Data
Model Based on OODBMS,º Information and Software Technology,
vol. 37, no. 3, pp. 177-190, 1995.

[14] P. DõÂaz, I. Aedo, and F. Panetsos, ªLabyrinth, An Abstract Model
for Hypermedia Applications. Description of Its Static Compo-
nents,º Information Systems, vol. 22, no. 8, pp. 447-464, 1997.

[15] D. Schwabe and D. Rossi, ªDeveloping Hypermedia Applications
Using OOHDM,º Proc. HT98 Workshop Hypermedia Development
Processes, Methods, and Models, 1998.

[16] T. Isakowitz, ªStructured Design of WWW and Intranet Applica-
tions,º CRIS Working Paper Series, Information Systems Dept. Stern
School of Business. New York Univ., 1998.

[17] F. Garzotto, L. Mainetti, and P. Paolini, ªAdding Multimedia
Collections to the Dexter Model,º Proc. European Conf. Hypertext,
pp. 70-80, 1994.

D�IAZ ET AL.: MODELING THE DYNAMIC BEHAVIOR OF HYPERMEDIA APPLICATIONS 571

[18] P. Kommers, A. Ferreira, and A. Kwak, Document Management for
Hypermedia Design. Springer-Verlag, 1998.

[19] Metafile for Interactive Documents. Available in www.nawcsti.na-
vy.mil/mid/mid.html.

[20] F. Tompa, ªA Data Model for Flexible Hypertext Database
Systems,º ACM Trans. Information Systems, vol. 7, no. 1, pp. 85-
100, 1989.

[21] P.K. Garg, ªAbstraction Mechanisms in Hypertext,º Comm. ACM,
vol. 31, no. 7, pp. 862-870, July 1988.

[22] G. Richard and A. Rizk, ªQuelques IdeÂes pour une ModeÂlisation
des SysteÁmes Hypertextes,º Technique et Science Informatiques,
vol. 9, no. 6, pp. 505-514, 1990.

[23] P.J. NuÈ rnberg and J.J. Leggett, ªA Vision for Open Hypermedia
Systems,º J. Digital Information, vol. 1, no. 2, 1997, http://
ojfpc.ecs.soton.ac.uk.

[24] W. Mahdi, L. Chen, and D. Fontaine, ªImproving the Spatial-
Temporal Clue Based Segmentation by the Use of Rhythm,º
Research and Advanced Technology for Digital Libraries, pp. 169-181,
1998.

[25] ISO 13522-1 Information Technology-Coding of Multimedia and
Hypermedia Information-Part I: MHEG Object Representation
Base Notation.

[26] A. Dix and G. Abowd, ªModelling Status and Event Behaviour of
Interactive Systems,º Software Eng. J., pp. 334-346, Nov. 1996.

[27] M. Varziginannis and S. Boll, ªEvents in Interactive Multimedia
Applications Modeling and Implementation Design,º Proc. Int'l
Conf. Multimedia Computing and Systems, ICMCS '97, pp. 244-251,
June 1997.

[28] K.U. Wiil and J.J. Leggett, ªThe HyperDisco Approach to Open
Hypermedia Systems,º Proc. Hypertext 96, pp. 140-148, 1994.

[29] F.G. Halasz, ªReflection on NoteCards: Seven Issues for The Next
Generation of Hypermedia Systems,º Comm. ACM, vol. 31, no. 7,
pp. 836-852, 1988.

[30] A.M. Fountain, W. Hall, I. Heath, and C. Davis, ªMICROCOSM:
An Open Model for Hypermedia With Dynamic Linking,º Proc.
European Conf. Hypertext. Hypertext: Concepts, Systems and Applica-
tions, A. Rizk, N. Streitz, and J. Andre, eds. pp. 298-311, Nov. 1990.

[31] N. Meyrowitz, ªThe Link to Tomorrow,º Unix Rev., vol. 8, no. 2,
pp. 58-67, 1990.

[32] R. Rada, Interactive Media. Springer-Verlag, 1995.
[33] R. Gonzalez, ªHypermedia Data Modeling, Coding and Semio-

tics,º Proc. IEEE, vol. 85, no. 7, pp. 1111-1140, 1997.
[34] F. Garzotto, L. Mainetti, and P. Paolini, ªHypermedia Application

Design: A Structured Approach,º Designing User Interfaces for
Hypermedia, W. Shuler, J. Hanneman, and N. Streitz, eds., pp. 5-17,
1995.

[35] N.M. Delisle and M.D. Schwartz, ªContextsÐA Partitioning
Concept for Hypertext,º ACM Trans. Office Information Systems,
vol. 5, no. 2, pp. 168-186, 1987.

[36] P. Samarati, E. Bertino, and S. Jajodia, ªAn Authorization Model
for a Distributed Hypertext System,º IEEE Trans. Knowledge and
Data Eng., vol. 8, no. 4, pp. 555-562, July/Aug. 1996.

[37] D. Merkl and G. Pernul, ªSecurity for Next Generation Hypertext
Systems,º Hypermedia, vol. 6, no. 1, pp. 1-19, 1994.

[38] B. Thuraisingham, ªMultilevel Security for Information Retrieval
Systems-II,º Information and Management 28, pp. 49-61, 1995.

[39] C.F. Goldfarb, ªHyTime: A Standard for Structured Hypermedia
Interchange,º Computer, vol. 24, no. 8, pp. 81-84, Aug. 1991.

[40] P. DõÂaz, I. Aedo, F. Panetsos, and A. Ribagorda, ªA Security Model
for the Design of Hypermedia Systems,º Proc. 14th Information
Security Conf. SEC '98. pp. 251-260, 1998.

[41] T.F. Lunt, ªSecurity in Database Systems,º Computers & Security,
vol. 11, pp. 41-56, 1992.

[42] N. Meyrowitz, ªIntermedia: The Architecture and Construction of
an Object-Oriented Hypermedia System and Applications Frame-
work,º Proc. Conf. Object-Oriented Programming Systems, Languages
and Applications (OOPSLA' 86), pp. 186-201, 1986.

[43] J.H. Walker, ªSupporting Document Development with Concor-
dia,º Computer, vol. 21, no. 1, pp. 48-59, Jan. 1989.

[44] J. Nielsen, Multimedia and Hypertext: The Internet and Beyond.
Academic Press, 1995.

[45] G. Hill, W. Hall, D. De Roure, and L. Carr, ªApplying Open
Hypertext Principles to the WWW,º Proc. Hypermedia Design, 1995.

[46] M. Egenhofer and R. Franzosa, ªPoint-Set Topological Spatial
Relations,º Int'l J. Geographic Information Systems, vol. 55, no. 2,
pp. 160-174, 1991.

[47] K. Hadouda, C. Djeraba, and H. Briand, ªModelling of the
Interactive Application in Term of Scenario in a Multimedia
Database,º Proc. Eighth Int'l Workshop Database and Expert Systems,
pp. 246-251, 1997.

[48] J.F. Allen, ªMaintaining Knowledge about Temporal Intervals,º
Comm. ACM, vol. 26, no. 11, pp. 832-843, Nov. 1983.

[49] M. Li, Y. Sun, and H. Sheng, ªTemporal Relations in Multimedia
Systems,º Computer and Graphics, vol. 21, no. 3, pp. 315-320, 1997.

[50] J.C. Wild, K.K. Maly, C. Zhang, D.E. Eckhardt, C.C. Rorberts, D.
Rosca, and T. Taylor, ªProject Management Using Hypermedia
CASE Tools,º Proc. Int'l Conf. Data and Knowledge Systems for
Manufacturing and Eng., pp. 722-727, May 1994.

[51] I. Aedo, T. Ayllon, M. Landoni, and F. Panetsos, ªSIHEN: A
Hypertext-Based Environment for Automatic Creation of Ency-
clopaedias and Dictionaries,º HyperMedia, vol. 6, no. 2, pp. 111-
123, 1994.

[52] P. Gloor, Elements of Hypermedia Design: Techniques for Navigation
and Visualization in Cyberspace. Boston, Mass.: BirkhaÈuser, 1997.

[53] G.S. Graham and P. Denning, ªProtection-Principles and Prac-
tice,º Proc. Spring Join Comp. Conf., 40, pp. 417-429, 1972.

[54] D.B. Lange, K. ésterbye, and H. SchuÈ tt, ªHypermedia Storage,º
1992, Available through WWW ftp://ftp.iesd.auc.dk/pub/
reports/techreports/R92-2009.ps.Z

[55] I. Aedo, P. DõÂaz, F. Panetsos, M. Carmona, S. Ortega, and E. Huete,
ªA Hypermedia Tool for Teaching Primary School Concepts to
Adults,º Proc. IFIP WG 3.3 Working Conf. Human Computer
Interaction and Educational Tools, pp. 180-188, 1997.

[56] P. DõÂaz, I. Aedo, and F. Panetsos, ªA Methodological Framework
for the Conceptual Design of Hypermedia Systems,º Proc. Fifth
Conf. Hypertexts and Hypermedia: Products, Tools, and Methods
(H2PTM '99), pp. 213-228, Sept. 1999.

Paloma DõÂaz received a degree and a doctorate
both in computer science from the Universidad
Politcnica de Madrid, Madrid, Spain. Since 1992,
she has been working as a teacher in the
Universidad Carlos III de Madrid where she is
currently an associate professor in the Computer
Science Department. She has been mainly
researching the software engineering and hy-
permedia fields, although other areas of interest
include tele-education, electronic journalism,

information security, and digital libraries. She is a coauthor of several
articles and books concerning her research and teaching activities. Dr.
DõÂaz is a member of the IEEE and ACM.

Ignacio Aedo received a degree and a doc-
torate both in computer science from the
Universidad Politcnica de Madrid, Madrid, Spain.
Since 1991, he has been working as a teacher in
the Universidad Carlos III de Madrid where he is
currently an associate professor in the Computer
Science Department. He has been mainly
researching the use of new technologies in
educational environments. He has also worked
in several fields including hypermedia models,

electronic books, electronic journalism, and digital libraries. He is a
coauthor of several articles and books concerning his research and
teaching activities. Dr. Aedo is a member of the ACM.

Fivos Panetsos studied applied mathematics at
the Pavia Unversity in Italy and carried out a
PhD degree in artificial intelligence at the
Complutense University and a second PhD
degree in neural science at the Autonomous
University, both in Madrid, Spain. His interests
include information processing in the brain,
neural networks and modelling, and the devel-
opment of hypermedia systems. Presently, he is
an assistant professor at the Complutense
University of Madrid.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

572 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 6, JUNE 2001

