

VRWork: Toolkit for Development of Web based Virtual
Environments Supporting Multi Users

Junhyun Tak
Dept of Computer Science &
Engineering, INHA University

Inchon, Korea
+82-32-868-9623

tak2023@hanmail.net

Seihoon Lee
Dept of Computer Science,

INHA Technical College
Inchon, Korea

+82-32-860-7441

seihoon@true.inhatc.ac.kr

Changjong Wang
Dept of Computer Science &
Engineering, INHA University

Inchon, Korea
+82-32-870-2332

cjwang@inha.ac.kr

ABSTRACT
Networked Virtual Environments allows multiple users to interact
in real-time even though those users may be located around the
world. The NVE developer must manage consistent distributed
information, guarantee real-time interactivity with limited network
bandwidth, processing and rendering resources. Moreover the
majority of the functions for NVE applications are common.
Therefore the NVE developer should tolerate the problem of
duplication of development efforts for same functions.

So, we design a toolkit for supporting the development of NVE on
Internet and name it VRWork. VRWork provides multi-user
supporting functions and additional functions, which is needed for
human oriented collaborative applications.

The multi-user supporting in VRWork lay emphasis on the
scalability and availability of NVE applications. For this VRWork
use multi-level event filtering. VRWork’s additional functions for
human oriented collaborative applications are as follows: Efficient
access control for shared object, Easy sharing of legacy 2D
application software in NVEs, and Dynamic notification of events.

Keywords
Networked virtual environments, toolkit, access control,
application sharing, dynamic event notification

1. INTRODUCTION
Networked Virtual Environments (NVEs) allows multiple users to
interact in real-time even though those users may be located
around the world. These environments usually aim for an
immersive experience by incorporating a sense of realism such as

realistic 3D graphics and stereo sound, and so forth. In recent
years, open standards for the delivery of NVEs over the Web are
beginning to emerge [1,2]. Increasingly used for team training,
collaborative design and engineering, and multi-player games,
NVEs envisioned future commercial applications include virtual
shopping malls and showrooms, on-line trade shows and
conferences, remote customer support, and distance learning.

In many respects, NVEs form the foundation for a new generation
of standard applications [3].

The NVE developer must manage consistent distributed
information, guarantee real-time interactivity with limited network
bandwidth, processing and rendering resources. Moreover the
majority of the functions for NVE applications are common. So
the NVE developer should tolerate the problem of duplication of
development efforts for same functions. So, current focus in the
NVE arena is on the development of toolkits that simplify the
development of NVEs and provide a standard framework for NVE
application development [3,4].

We design a toolkit for the development of NVEs on Internet, and
call this VRWork. VRWork provides multi-user supporting
functions and additional functions, which is needed for human
oriented collaborative applications.

The multi-user supporting in VRWork lay emphasis on the
scalability and availability of NVE applications. VRWork
provides multi-level event filtering:

- Occlusion based filtering: restrict the event notification range
into the zone

- Distance based filtering: differentiate event notification rate
according to the observers DOI (degree of interest) on the
observed

- Filtering or amplification for availability: filtering (or
amplification) by dynamic group policy, although unlike the
real world

VRWork’s additional functions for human oriented collaborative
applications are as follows:

- Efficient access control for shared object

- Easy sharing of legacy 2D application software in NVEs

- Dynamic notification of events

2. RELATED WORKS
Event filtering is the typical way that NVE developers use for the
scalability and efficient awareness. Event filtering is based on
spatial model that decides the event propagation region in the
whole world.

There were several spatial models. NVE applications that on wide
area terrain like as the DIS [5] based systems are use fixed-size
static area. NVE applications that model the inside of buildings
like as shopping malls or business offices are use variable-size
static area [6]. Another approach is the way that uses the
intersecting volume to model the interaction among users. This
notion of dynamic spatial area is evolved form COM IC. This
spatial model known as aura decide the level of awareness
according to the focus of observer and the nimbus of observed [7].

3. SPATIAL MODEL for VRWork
In general, a logically single large virtual space on Internet is
consisted of several virtual worlds each of that forms a
downloadable VRML file. We define that the virtual space, VS is a
power set of the individual VRML files.

[D1] Virtual Space

SW = {W|W is a world, which is a single VRML file}

VS = p(SW) , n(SW) >= 1, n(VS) >= 1

Each virtual world W is divided into several partial regions. We
call this dividing unit zone.

[D2] Virtual World

W = {Z|Z is a zone}, n(W) >= 1

Zones contain SE and DO. SE is a set of static entities and DO is a
set of dynamic objects.

[D3] Zone

Z = {SE, DO}

where, SE is a set of static entities

 DO is a set of dynamic objects

Static entity is a VRML node, which construct the scene graph.
Dynamic object contains a set of participants and a set of shared
objects.

[D4] Dynamic Object

DO = {P, SO}

A participant p, element of P, has following attributes.

[D5] participant

p(id, position, v_direction, m_direction, roles, action)

where, id is a identification name

 position is a presence position where he is

 v_direction is a viewing direction at current position

 m_direction is a moving direction at current position

 roles are current stations which he has

 action is a current action what he doing

Shared objects, which react to the participant’s action, contain a
set of general shared object and a set of boundary objects.

[D6] Shared Object

SO = {GO, BO}, n(BO) >= 1

GO = {go | go is general shared object}

BO = {bo | bo is a boundary object }

[D7] SO’s attributes

go(id, position, proles, behaviors)

bo(id, position, proles, behavior)

where, id is a identification name

 position is a presence position where it is

 proles are current stations those can trigger so’s behavior

 behaviors are possible behaviors which it can do

Roles in [D5] and proles in [D7] are used to provide role based
access control to the shared world. Proles of a shared object mean
the permitted roles, which are allowed to trigger a behavior of the
shared object. So, only the participants whose role is same as the
shared object’s prole can access the shared object.

Boundary object is a shared object that has special behaviors such
as allowing or denying to the request of enter a spatial area.
Boundary objects provide access control to spatial area. A real like
virtual world would contains open areas such as corridor, park, etc.
At the same time it may contains secret areas that should be
protected from illegal access.

The primary role of NVE’s spatial model is providing efficient
awareness management. Our spatial model is based on zones that
are used in occlusion based spatial division like as the Spline’s
locale. This occlusion based filtering is very appropriate to the
case of human oriented collaborative applications in which a
virtual world is consisted of rooms, which are divided by walls.
But, when the zone is wide there can be a number of notifications
of useless (or less useful) events. So distance based filtering which
used in the MASSIVE’s aura model is needed. In aura model, the
focus of observer and the nimbus of observed determine the level
of awareness. This determination goes with n(n-1)/2 times
decision of distance with 3D points and angle difference from the

observer’s viewing orientation to the observed’s position. This is
a graceful way for event filtering which simulate the case of real
world. But computational overhead grows a geometrically when
the number of users is grow. For human oriented collaborative
application, not accurate simulation, on Internet, which has low
network bandwidth and low computing resources, it is
appropriate to reduce the computational overhead even if it
decrease the accuracy a little. For this, we use hexagonal cell in
calculating the DOI (degree of interest) value and use it to handle
the event transfer rate. DOI value is calculated as follow:

- A zone is mapped with several hexagonal cells.

- Decide distance and angle difference among users by
comparison of cell ID rather than calculation of 3D floating
point vectors.

For this, we define position attribute in [D5] and [D7] as [D8].

[D8] position of participant and shared object

position(Z, cellID, pos_coord)

where, Z is a zone in which the participant is locate

 cellID is a name of hexagonal cell on which the participant
is locate

 pos_coord is a 3D coordinate value of the participant

4. VRWork BASED ON SPATIAL MODEL
VRWork is a toolkit for Internet NVE applications development.
Fig.1 is the overall software architecture of VRWork.

Management Service

 Cooperative Virtual Environments Application

Access
Control

Manager

Global
Manager

Zone
Manager

Access
Control
Manager

Session
Manager

Access
Control
Manager

Access
Control

Manager

Access
Control
Manager

Applicatio
n Sharing
Manager

Event Broker

Abstract Programming Interface

Network Protocol, Hardware, O/S

Figure 1. The architecture of VRWork Toolkit

VRWork’s 3D virtual world is consists of a set of zones. Zone is a
physical area unit, which decided by the division of the world
while designing the virtual world.

Zone Manager (ZM) supports the interactions among the users in
the zone. Session Manager supports dynamic group activity.

A session is a logical area in which inter-users interactions are.
Group policy rather than locations of users control a session. For

example, users in the same zone can be in separate sessions and
users in different zone can be in a same session.

Global Manager (GM) manages the entrance and leaving of users
and coordinates several Zone Managers. When a user is to enter a
zone, GM sends the user information to the ZM and records the
users’ movement path.

Access Control Manager (ACM) manages the access right to the
shared objects and zones based on the role of users. Virtual world
can consists of open areas such as park, shopping mall, etc. At the
same time it can have secret areas such as office, control center, etc.
VRWork provides access control on spatial area.

Application Sharing Manager (ASM) enables the users share the
legacy application software such as word processors, painting
software, CAD software, etc. This can lead more available and
efficient collaboration of users.

Event Broker supports the dynamic publishing and subscribing of
events in order to provide the transparency between publishers
and subscribers. Further, VRWork use self-describing XML
representation for the events. Using XML, it is possible to filter
the events by content. We developed several NVE applications on
VRWork. The architecture of NVEs on VRWork is client/server
architecture as fig.2.

 Management Service

Event Broker

Client A (Publisher
& Subscriber)

Client B(Subscriber)

publish
events

notify
events

subscribe
events

join/
leave

Access
Control

Manager

Global
Manager

Access
Control

Manager

Zone
Managers

Access
Control

Manager

Session
Manager

Access
Control
Manager

Access
Control
Manager

Access
Control

Manager

Application
Sharing
Manager

Figure 2. The architecture of NVEs on VRWork

4.1 Event Broker
The event-processing scheme in legacy VR environment is
dependent to the implementing system, and the definition of
events is dependent to applications of system. Therefore, we
propose event broker(EB) as a generic event notification system
to eliminate these dependencies.

The proposed EB designs Event Notifier Model [8, 9] to perform
dynamic event filtering to reduce the amount of events.
Additionally, we describe events based on XML, so it increases
the efficiency of interaction with external services and makes
searching convenient through event logs management.

Figure 3 shows the architecture of event broker.

Interface

Distributed Virtual Environment

Notifier

Publisher

other virtual worldother XML-base
information providers

providerproviderPublisher

SubscriberPublisher

server

server

Figure 3. The architecture of event broker

The designed notifier has following features.

- It simplifies complex event propagation routes by providing
transparency between publisher and subscriber.

- It makes an easy to insert or delete the receiving events of
shared objects or specific information dynamically regardless
of system when it uses different interaction ranges according
to avatar. The definition of method about these interaction
ranges is dependent on the management of VR environments,
but it is independent of notification system.

- It provides dynamic filtering facilities. Subscribers can
personalize events propagated through the registration of
filter about specific events to notifier. Events described in
XML are also possible to filtering of event contents using
searching and conversion of XML tags because XML based
events are hierarchical and self-describing.

It can interact with legacy applications dependent on domain. And
it enables to convert XML formed events with the registration of
applied application interfaces to notifier.

4.1.1 Event Description
The basic event types for accepting events in VR environment are
defined as follows.

We use XML to describe events because it is possible content
based filtering and is convenient to build database of log
information. In addition, these information are useful to retrieve
events generated, and write working information or behavior
patterns of participants in VR environment.

4.1.1.1 Action Event
Action events are generated when the object status is changed, or
when active behaviors are happened. These events are related with
persistency maintenance of VR environment. They are defined as
follows according to the degree of synchronization.

- Independent interaction event: This event is generated
independently regardless of participants such as movement
of custom objects or changes of avatar location. Recent

events can be substituted for previous events because it does
not effect other participants immediately. However, this
should be reflected upon other clients for consistency.

- Shared interaction event: This kind of event effects other
clients immediately, so it has to be reflected firstly of all than
independent events. For example, events generated in
cooperative work should be reflected on participants firstly.

4.1.1.2 Information event
This event has no connection with the synchronization of virtual
environment. It is not notified for consistency immediately, but
should be transmitted. This event is generated when mail type
data is propagated to internal/external virtual environment, or
when the previous log data is requested from system. Figure 4 is a
DTD for data structure of events, and Figure 5 is a sample event
that describes the data structure of shared Interaction event using
XML Syntax. This is event that avatar named “Ellio” makes a
movement the target object of cooperative work, “CoWork”,
according to the value of attribute <vec3fx>.

The sub-element of <Content> tag is used to describe the node
name and value of VRML, which should be changed by this event.
Events using XML syntax can be extended through adding event
tag according to each application applied notification system, and
enable event transmission between applications for
interoperability of result in cooperative work. And building
database of log data described in XML can be applied for analysis
of the propensity to consume and the shopping route pattern in
virtual shopping mall, analysis of study attitude of students in
virtual class, the maintenance of a course of working in
cooperative work, and so on.

The designed Notifier consists of Converter and Filter. Converter
changes events, which are created in external services of other VR
environment, to XML. Filter reduces the amount of events by
filtering.

Figure 4. DTD for event data structure

Figure 5. Sample shared interaction event

If Notifier receives events from publisher, it doesn’t transmit an
event to subscribers at once. Events are transmitted to subscribers
after these events pass through Converter and Filter. Figure 5
shows the operation of XML Converter, the registration of
filtering and the applying point of Converter and Filter during
processing of event notification.

If events are created in other VR environment, Converter must
change events to XML-form to interact with the system of other
VR environment. Filter performs events filtering though examining
the events that are registered by subscribers, and then transmits
the filtered events to subscribers. At this time, Notifier knows the
propagation range of event through accessing to VR environment
server that events were generated in advance.

4.2 Collaborative Multi User Supporting
Modules
4.2.1 Global Manager
Global manager consisted of zone controller, user manager, and
position tracer. Zone controller coordinates several zone managers.
User manager manages information about all users. This
information contains log information. Position tracer records the
users’ movement path. User’s movement path is important
information that can be used to analysis the users behavior pattern.

4.2.2 Zone Manager
Zone manager consisted of state manager, participant manager, and
request handler. State manager manages current state information
of the zone in order to provide consistency to the participants.
Participant manager manages the information about current
participants in the zone. Request handler transfer request events
from participants to event broker.

4.2.3 Session Manager
Session Manager consisted of group factory and group manager.
Group factory manages the life cycle of a group. Group factory
creates a group when users request it and manages group
information such as group id, subject of the group, participants ids
who are participate in the group.

Group manager manages the group context. Group context
contains information about current participants, current chairman
of the group, current participant who has the right to speak, and
shared application.

4.2.4 Access Control Manager
Access control manager decides that whether permit or deny the
request from participants. Participants’ requests are contain the
access to the shared objects and the request to change the system
information such as proles of object. Access control manager uses
traditional locking mechanism in order to provide concurrency
control. Figure 6 shows the architecture of access control manager.

Access Control Manager

Object InfoZone Info

Zone Access
Control Manager

Lock Manager

Object Access
Control Manager

Request Handler

Event Broker

Request Reply

Figure 6. Role based access control manager

4.2.5 Application Sharing Manager
Application sharing manager applies the change event, which
occurs on the application view from user, to the shared
application. And it sends the applied view other users.

Figure 7 shows the architecture of application sharing manager.
Application shell starts the application software at server when
group manager sends the application launch request. And it
applies the client’s event on his shared view to the application
software on the server. Scheduler translates the event on the
shared view to the window event and schedules the participants’
events in order to protect the atomic action such as mouse clicking
or dragging.

Applicaiton Sharing Manager

Application Shell

Scheduler

App 1

app info

FIFO

Event Handler

Application LauncherApplication Launcher

Application LauncherEvent Dispatcher

Application LauncherView Capturer

Events

Application
Sharing View

Figure 7. Application sharing manager

5. VIRTUAL SCHOOL
We developed VIRTUAL SCHOOL, a collaborative learning NVE
system on Internet [10] using VRWork toolkit. Figure 8 shows a
learning scene in which several students are participating.

Figure 8. Collaborative learning scene in VIRTUAL
SCHOOL

In VIRTUAL SCHOOL, students can realistic group discussion
and teachers can coordinate the group policy at run time. So
various learning models are easily applicable. System
administrators can multi level event filtering according to the scale
of the NVE application. In the case of VIRTUAL SCHOOL,
which consisted of one corridor, two classrooms and one science
lab, and 60 students and 3 teachers are participating in 30-minute
learning, the amount of event transfer was reduced at 45%.

6. CONCLUSION
We designed and implemented VRWork-a toolkit for development
of web based NVE applications supporting multi users. For the
human oriented collaborative NVE applications on Internet,
VRWork provides additional functionalities. VRWork is based on

extended spatial model that support multi level filtering and role
based access control and using event notifier model that provides
dynamic event notification.

7. REFERENCES
[1] VRML ’97 spec:

http://www.vrml.org/technicalinfo/specifications/

[2] VRML Living Worlds Working Group Web Site:
http://www.vrml.org/WorkingGroups/living-worlds/

[3] Bernie Roehle, “Channeling The Data Flood,” IEEE
SPECTRUM (1997).

[4] Sandeep Singhal and Michael Zyda, Networked Virtual
Environments , Addison-Wesley, New York (1999).

[5] IEEE standard for information technology -protocols for
distributed applications: entity information and interaction,
IEEE standard 1278-1993. IEEE Computer Society, 1993

[6] J. Barrus, C. Waters, and D.B. Anderson, “Locales and
Beacons: Efficient and precise support for large multi-
user virtual environment,” In Proceedings of the 1996
Virtual Reality Annual International Symposium, 204-
213 (1996).

[7] C. Greenhalgh, and S. Benford, “Boundaries,
Awareness and Interaction in Collaborative Virtual
Environments,” In Proceedings of 6th Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprise(WETICE), 193-198, IEEE Computer Society
(1997)

[8] Gupta et al., “Event Notifier: A Pattern for Event
Notification,” in Java Report Magazine, (1998).

[9] Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley (1997).

[10] YT Baek, JH Tak, SH Lee, CJ Wang, “Multi-users
Collaborative Learning System Using Virtual Technology
on Web”, SchoolNet 2000, Busan, Korea (2000).

