
XML-Based Automatic Web Presentation Generation

Flavius Frasincar, Geert-Jan Houben

Department of Computer Science

Eindhoven University of Technology

Eindhoven, the Netherlands

fflaviusf, houbeng@win.tue.nl

Abstract: This paper presents a method that automates hypermedia presentation generation
on the Web. The method is based on RMM (Relationship Management Methodology) for as-
pects of hypermedia design. It distinguishes between the logical representation of the data and
its actual presentation. Using new emerging Web technologies like XML (Extensible Markup
Language) and XSLT (XML Stylesheet Language Transformation), we have implemented a
prototype to experiment with the proposed method. Data filters written in XSLT prove to facil-
itate the multi-phase hypermedia presentation generation method.

Introduction

World Wide Web (WWW) is the most important platform for information exchange between Internet
users. As a result there is an increasing need for methodologies that support the design of Web-based Information
Systems (WIS) (Isakowitz et al., 1998a). We consider WIS that integrate heterogeneous data sources, such as XML
repositories, relational and object-oriented data bases etc. A user asks a query to such a system and as a result a
presentation is generated (De Bra & Houben, 2000). The main focus of this paper is the question how to automate
the process of generating such hypermedia presentations.

Several hypermedia design methodologies are available, like RMM (Relationship Management Method-
ology) (Isakowitz et al., 1995) and OOHDM (Object Oriented Hypermedia Design Methodology) (Schwabe et
al., 1996). The design method that we use here applies the core of RMM for reasons of its simplicity and its E-R
(Entity-Relationship) foundation. Extending the well-accepted E-R model to model information domains, and sub-
sequently adding navigation structures to it, proves to be a solid ground on which to base the automatic generation
of hypermedia presentations.

Before we discuss the prototype implementation, we shortly mention the key concept (both in RMM
and our specific design method) of ’slice’, which is used to denote meaningful presentation units. A slice groups
together attributes and possibly other slices. In order to have a uniform approach to slice hierarchies (Isakowitz
et al., 1998b) we consider primitive slices to be attributes. Each slice belongs to an entity but it can contain also
slices belonging to different entities: in this case, the relationships between entities which make such an embedding
possible are indicated. If the relationships are one-many an access structure (index, tour, and indexed guided tour)
is associated to the slice nesting. Many-many relationships (from the E-R model) are decomposed in two one-many
relationships. There are two types of slice relationships: aggregation (presented above) and reference (hyperlinks
between slices). For a particular application, the application model describes all slices and their relationships
(Isakowitz et al., 1998b), thus specifying the hypermedia aspects of the application. Due to the fact that each slice
is owned by an entity and encapsulates some of the entity’s attributes we can view the application model as an
extension of the E-R model, and thus as an important step in the design process of the hypermedia presentation.

Method and Tools

The presentation generation method is based on four steps which are depicted in (Fig. 1). In the first step,
Data Cleaning, the data retrieved from the Data Retrieval module is adjusted to the specific format for E-R model
instances. For each application, there is an application model which describes the slice relationship model on top
of the considered domain model. In the next step, Logical Transformation Generation, a transformation engine is
produced based on the specific application model. This transformation engine is used by the following step, Logical
Transformation, to package the retrieved data instances into slices. The final step, Presentation Transformation,
generates a presentation, e.g. in HTML, from the slice packaged data.

application model
 to (xsl)

cleaned data to logical data

(xml)

(xml)
logical data

Logical

Transformation

Transformation

Logical Transformation

Generation

retrieved data

cleaned data

(xml)

1

23

4

Data Cleaning

(xml)

presentation data

retrieved data

application model

logical data

presentation data

 Presentation

 to (xsl)

 to (xsl)

 to (xsl)

logical data

(html)

cleaned data

cleaned data

Figure 1: Method

The artifact of each step is a valid XML (Extensible Markup Language) (W3C XML Working Group,
2000, Bradley, 2000) file, that is a file that complies to a prescribed DTD (Document Type Definition) file. For the
Logical Transformation Generation step an XSL (XML Stylesheet Language) (W3C XSL Working Group, 2000,
Bradley, 2000) file is produced which is also an XML document. At the core of each step there is an XSL file
which describes to an XSLT (XSL Transformation) processor how to convert the input XML file to the desired
output XML file.

In order to experiment with the proposed method a demo was developed. The domain model of this
application is based on the data provided by the Web site of the Rijksmuseum in Amsterdam. The prototype uses
annotated Rembrandt paintings to exemplify the clair-obscur painting technique. As a software tool, the XSLT
processor Xalan, provided by the Apache XML Project (Xalan Apache XML Project, 2000), is used. The next
sections illustrate the different steps of the method for this demo application. Due to space limitations we can only
show small excerpts of the software.

Data Retrieval

The demo considers one particular query, a restriction that doesn’t affect the purpose of the presented
method to show how to dynamically generate hypermedia presentations on the Web. The user asks a query to

the system, a query which is expressed (in the current implementation) in SQL. The results of the query are
encapsulated in an XML file which has three components: entity instances, attribute instances, and relationship
instances. (Example 1) presents a small excerpt from the DTD used to describe the retrieved data and (Example 2)
provides a piece of the retrieved data as an XML fragment.

Example 1 (Data.dtd)
<!ELEMENT attribute-instance (#PCDATA)>
<!ATTLIST attribute-instance attribute-id CDATA #REQUIRED>

Example 2 (Data.xml)
<attribute-instance attribute-id="attribute.technique.name">
<![CDATA[clair-obscur]]>
</attribute-instance>

Data Cleaning

The Data Cleaning step bridges the gap from the XML data representing the SQL output to XML data
representing an E-R model instance. The transformation stylesheet of this step captures the domain knowledge to
fill the missing data. Relationship names are added to the retrieved data and the inverse of the relationship instances
is built (since they were not originally included in the data retrieved). (Example 3) gives a flavor of the XSL file
that specifies the above transformations.

Example 3 (DataCleaning.xsl)
<xsl:when test="@relationship-id=’painting-technique’">

<xsl:attribute name="relationship-id">relationship.exemplifies</xsl:attribute>
</xsl:when>

Application Model

The application model is used to describe at the logical level the hypermedia aspects of the application
(Isakowitz et al., 1998b). At this logical level, the slice types are identified. By slice type we mean a full specifica-
tion of the elements (slices and/or attributes) contained in the slice, and reference relationships to other slices. In
the introduction section we explained that the application model is an extension of an E-R model. (Fig. 2) presents
the E-R model of the demo application. Note that we model pictures as URLs (Uniform Resource Locator), so all
the attributes are of type text (string).

painting painter

name name biography
name

picture year

technique exemplified_by painted_by

description

(Reverse is ’exemplifies’ one-one) (Reverse is ’paints’ one-many)

Figure 2: E-R model

(Fig. 3) gives the application model design for the application. There are two (non-primitive) slices, both
of them calledmain that belong to two different entities,techniqueandpainting respectively. The starting point
of the presentation, that istechnique.main(the ’.’ denotes the ownership relation between slices and entities), is
indicated in bold font.technique.mainencapsulates thenameanddescriptionattributes fromtechniqueand an
index structure of hyperlinks. Each of these hyperlinks has as an anchor the picture’snameattribute and as target
the slicepainting.main. The slicepainting.mainis composed of three attributes of painting:picture, name, and
year, and the attributenameof the associated painter. The entity relationshipsexemplifiedby andpaintedby are
used to specify (at instance level) which attributes (instances) belonging to different entities are (logically) grouped
together in the presentation.

main

picture

name

yeardescription

painted_by

exemplified_by

picture

painting

name

Index name

painter

technique

main

painting

Figure 3: Application model

We encode slices as XML elements that can contain text (the so-called empty slice) (Isakowitz et al.,
1998b), slice references, hyperlinks, index, and guided tours (Example 4). (Example 5) presents a small piece of
the application model which illustrates the use of slice references in slice definitions.

Example 4 (Application.dtd)
<!ELEMENT slice (text | (slice-ref|hyperlink|index|guided-tour)*)>
<!ATTLIST slice id ID #REQUIRED>

Example 5 (Application.xml)
<slice id="slice.painting.main">

<slice-ref idref="attribute.painter.name"
relationship-ref="relationship.painted_by"/>

...
</slice>

Logical Transformation Generation

The Logical Transformation Generation step is responsible for building the main presentation transfor-
mation engine, that is the engine that packages the retrieved data instances into slices. It is implemented as an XSL
stylesheet that generates another stylesheet (Lemmens & Houben, 2001). The input of this step is the application
model encoded as explained in the previous section in an XML file. Knowing the type description of each slice, a
stylesheet is generated that will transform data at instance level. An excerpt of the stylesheet implemented for this
step is presented in (Example 6).

Example 6 (LogicalTransformationGeneration.xsl)
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:axsl="http://www.w3.org/1999/XSL/TransformAlias"
version="1.0">

<xsl:template match="/">
<axsl:stylesheet version="1.0">
<axsl:template match="/">
<xsl:element name="results">

...
<xsl:apply-templates select="//slice-ref" mode="ROOT"/>

</xsl:element>
</axsl:template>
</axsl:stylesheet>

</xsl:template>
...
</xsl:stylesheet>

One can observe that there are two namespaces defined for stylesheets, one for the current one and one
for the output. For each slice reference a template is called in the modeROOT, which generates an element of
typeslice-instanceat the top level. Once a slice instance is encoded each reference to another slice (in its body)

is replaced by aslice-instance-refwhich points to one of the top level slice instances. The main slice type (the
starting point of the presentation) is populated by all the instances of the entity that owns that slice. In case that a
relationship is involved, only those entity instances that are related to the current entity instance via a relationship
are considered. For attributes or slices that belong to the current entity instance the population is obvious, as the
current entity instance is used.

Logical Transformation

The Logical Transformation step packages the data instances into slices (it provides instances of slice
types based on the retrieved data). The stylesheet that performs this transformation was automatically generated
by the previous step. The input of this step is an XML file containing the cleaned data, and the output is another
XML file that describes the grouping of the input data into slices. (Example 7) illustrates how to retrieve attribute
values from the input data.

Example 7 (LogicalTransformation.xsl)
<text>

<axsl:value-of select="attribute-instance[@attribute-id=’attribute.painting.name’]"/>
</text>

Presentation Transformation

The Presentation Transformation step builds a Web presentation file. We used HTML for the code gener-
ator, but it can be any other hypermedia format supported by the Web. The presentation code generator is based on
a stylesheet that takes as input the slice packaged data (the output of the previous step) and converts it to a HTML
file, ready to be presented on a Web browser (like Internet Explorer or Netscape Navigator). (Example 8) indicates
that for eachslice-instancean HTML table is generated. For eachslice-instance-refa row is built in the table.
(Fig. 4) illustrates the HTML representation of thepainting.mainslice instantiated with a painting by Rembrandt.

Example 8 (PresentationTransformation.xsl)
<xsl:template match="slice-instance">

<TABLE>
<xsl:apply-templates select="*"/>

</TABLE>
</xsl:template>

Self Portrait as the Apostle St Paul

1661

Rembrandt Harmensz. van Rijn

Figure 4: HTML presentation

In collaboration with CWI, Amsterdam, an interface between the output of Logical Transformation and
Cuypers presentation system (van Ossenbruggen et al., 2001) will enable the generation of a different, more cus-
tomized presentation in SMIL (Synchronized Multimedia Integration Language) format.

Hera Architecture

The experiences with this specific prototype are exploited in the Hera project (Houben, 2000), a research
project that investigates hypermedia systems able to automatically generate presentations from ad hoc queries on
heterogeneous data sources. Based on the principle of separation of concerns we distinguish two components in
the Hera system: data retrieval and data presentation. Data retrieval is responsible for the integration (wrapping
and mediation) of the different data input sources. It processes the input query and gathers the retrieved data. Data
presentation builds a logical view of the data to be presented (it includes all the steps presented in this paper except
for the last one) and outputs the (final) presentation (the last step of the proposed method).

Conclusions

In this paper we have considered an automatic presentation generation method based on four steps, and
we have illustrated experiences from a prototype based on this method. Throughout the entire process implemented
in the prototype the data is encoded in XML which proves to be an ideal format to store this structured data. We
have shown how this XML data is managed in the generation process: for each step a data filter is written in XSLT,
a standard supported by W3C for XML transformations. These data filters prove to fit well in our multi-phase
presentation generation.

In the future we will extend this prototype (and apply it to different applications) in order to investigate:
the extension of the system to multiple queries (based on slices), the impact of having different attributes types
(besides text) on the presentation generation, different back-ends for the final presentation, and slices-on-demand
(slices that are provided on demand, from a query, by a servlet).

References

Bradley, N. (2000).The XML companion. Addison Wesley.

De Bra, P. & Houben, G.J. (2000). Automatic Hypermedia Generation for Ad Hoc Queries on Semi-Structured Data.ACM
Digital Libraries, 240-241.

Houben, G.J. (2000). Hera: Automatically Generating Hypermedia Front-Ends for Ad Hoc Data from Heterogeneous and
Legacy Information Systems.Engineering Federated Information Systems, Aka and IOS Press, 81-88.

Isakowitz, T., Stohr, E., & Balasubramanian, P. (1995). RMM: A Methodology for Structured Hypermedia Design.Communi-
cations of the ACM, 38(8), 34-44.

Isakowitz, T., Bieber, M., & Vitali, F. (1998a). Web Information Systems.Communications of the ACM, 41(7), 78-80.

Isakowitz, T., Kamis, A., & Koufaris, M. (1998b). The Extended RMM Methodology for Web Publishing. Working paper
IS-98-18. Available online athttp://rmm-java.stern.nyu.edu/rmm/papers/RMM-Extended.pdf .

Lemmens, P. & Houben, G.J. (2001). XML to XML through XML.AACE WebNet.

Schwabe, D., Rossi G., & Barbosa S.D.J. (1996). Systematic Hypermedia Application Design with OOHDM.ACM Hypertext,
116-128.

van Ossenbruggen, J., Geurts, J., Cornelissen, F., Rutledge, L., & Hardman, L. (2001). Towards Second and Third Generation
Web-Based Multimedia.WWW10, 479-488.

Xalan Apache XML Project (2000). Xalan-Java version 1.2.2. Available online athttp://xml.apache.org/xalan .

W3C XML Working Group (2000). Extensible Markup Language (XML) 1.0 (Second Edition). W3C. Available online at
http://www.w3.org/TR/2000/REC-xml-20001006 .

W3C XSL Working Group (2000). XSL Transformations (XSLT) Version 1.1. W3C. Available online athttp://www.w3.
org/TR/xslt11 .

